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FOREWORD 

When in 1990, I decided to run my family business1 “for a while” ― which took me two decades ― I already 

had a plan for my book on denotational models of programming languages. It was the result of my research 

for nearly thirty years, starting in 1962 after I graduated from The Department of Mathematics and Physics of 

Warsaw University. I began my work in a group of young researchers who planned to build mathematical 

tools for software engineering. At that time there were only a few such groups in Poland and maybe 20-30 in 

the World. Although our approaches were technically different from each other, we were sharing mostly the 

same opinion about state of the art in software engineering. Let me try to sum it up now in a few lines.  

In each engineering ― except software engineering ― the designing process of a new product starts with 

a blueprint supported by mathematical calculations. Both provide a mathematical warranty that the future 

functionality of the product will satisfy the expectations of the designer and the future user.  

In the IT industry, the situation was different. In the place of a blueprint and calculations, programmers 

(i.e., producers) were given an informal description of the future product in a natural language, like plain 

English or Polish. As a consequence, a bulk of the budget for product-development was spent on testing, i.e., 

removing errors introduced at the stage of coding. Since testing may only discover errors but never gives a 

guarantee of their absence, the remaining bugs were passed on to the user to be removed later under the name 

of “maintenance”. In some cases, these situations were leading to spectacular catastrophes. Here are a few 

examples: 

• the death of six patients in  US hospitals as a result of a wrong computer-computations of radiation 

dosage (1985), 

• the catastrophe of an American lander of the Venus planet (the 1980-ties), 

• the catastrophe of an oil platform in a Norwegian fiord (1991), 

• Airbus crash in Warsaw (1993)2, 

• an overlooking of Lothar hurricane by German meteorological services (1999), 

• a rounding error in Intel’s microprocessor (1995). 

That was the situation in the past. And how is it today? Today software products are a few orders of magnitude 

bigger, and the number of their users grows exponentially. However, the problems mentioned above have not 

disappeared. The following statistics concerns software products of a total value of 250 billion USD (see [1]): 

• 88% of projects exceeded the planned realization time and/or budget, 

• the average overrun of the assumed budget was 189%, 

 
1 I was borne in a family of Warsaw’s confectioners who’s firm was established in 1869. The business survived two 

world wars and 45 years of communist time, hence when our country became independent again in 1989, I decides 
to develop our family business according to the European standards. My father passed away many years ago and my 
son was too young to take the business over. My preliminary plan was to stay in the business for a few years only and 
then to come back to my beloved research. The life turn out, however, more difficult than I expected.  

2 In this case, although the cause of the accident had its origin in the software, this error was not due to programmers, 

but to the aircraft engineers, who did not anticipate certain specific aerodynamic conditions that may occur during the 
landing of the aircraft. In effect, they passed a wrong specification to programmers. For this information, I am thankful 
to Jarosław Deminet. 
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• the average overrun of assumed realization-time was 222%. 

It is also a well-known fact that every user of a software application has to accept a disclaimer. Here is a 

typical example dating from 2018: 

There is no warranty for the program, to the extent permitted by applicable law.  Except when otherwise 

stated in writing the copyright holders and/or other parties provide the program "as is" without warranty of 

any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability 

and fitness for a particular purpose.  The entire risk as to the quality and performance of the program is with 

you.  Should the program prove defective, you assume the cost of all necessary servicing, repair, or correction. 

Is it thinkable that a producer of a car, a dishwasher, or a building could request such a disclaimer from his 

client? Why then is the software industry an exception? 

In my opinion, the cause of this situation is a lack of such mathematical models and tools for software 

engineers that would guarantee the functional reliability of products based on the way they have been designed 

and manufactured. The lack of mathematical models for programming languages also affects user-manuals of 

these languages, which again contributes to a low quality of programs.  

In the field of user manuals, I do not see progress either. A published in 1960 report on Algol 60 (see [5]) 

― a language, which largely influenced the development of several generations of programming languages  

― far surpassed today's manuals regarding not only the precision and the completeness of language 

descriptions but also their compactness3.  

First, their syntax was described by generative Chomsky’s grammars rather than ― as today ― by (usually 

unclear) examples. 

Second, their semantics, although defined without any mathematical tools (they were not known at that 

time) was described with the use of well-defined technical concepts such as variable, block, variable-visibility, 

procedure, procedure-parameter, recursion. Ten years later, the manual of Pascal [56] was written in a similar 

style4. 

Unfortunately, one cannot say the same about today’s manuals, where the authors do not distinguish ex-

pressions from instructions and instructions from declarations.  

The described situation is common not only for programming languages but also for many applications 

such as e.g., Content Management System Joomla! and Drupal. Their poor descriptions cause the growing 

popularity of support forums, where desperate users exchange their own experiences. Manuals are rarely used 

because they are not only imprecise and incomplete but highly unreadable due to their language lacking con-

ceptual apparatus, and to their volume. For instance, Algol 60 manual contained 237 pages and Pascal manual 

― 166 pages, whereas in the case of Phyton [69] we have 696 pages, for Access [80] ― 952 pages and the 

manual of Delphi that was supposed to become — as some of its predecessors — the universal language of 

programming for all times, exceeds 2000 pages.  

The users’ forums are therefore filled up with questions like "Hey, does anyone know how to ...?", to which 

most frequently nobody answers. From my practice, for three questions asked by me, two remain unanswered. 

I only find related questions asked by others, which convince me that I am not alone with my problem. 

 

3 Similar remarks can be made about a Polish manual [71] of Algol 60. 

4 Similar remarks are true for a Polish manual [63] of Pascal.  
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1 INTRODUCTION 

1.1 Reverse the traditional order of things 

The problem of mathematically-provable program-correctness appeared for the first time in a work of Alan 

Turing [78] published in conference-proceedings On High-Speed Calculating Machines, which took place at 

Cambridge University in 1949. Later, for several decades, that subject was investigated usually under the 

name of proving program correctness, but the developed methods never became standard tools of software 

engineers. Finally, all these efforts were abandoned what has been commented in 2016 by the authors of a 

monography Deductive Software Verification [2]: 

For a long time, the term formal verification was almost synonymous with functional verification. In the 

last years, it became more and more clear that full functional verification is an elusive goal for almost all 

application scenarios. Ironically, this happened because of advances in verification technology: with the ad-

vent of verifiers, such as KeY, that mostly cover and precisely model industrial languages and that can handle 

realistic systems, it finally became obvious just how difficult and time-consuming the specification of the 

functionality of real systems is. Not verification, but specification is the real bottleneck in functional verifica-

tion. 

In my opinion, the failure of constructing a practical system for proving or making programs correct has 

two sources.  

The first lies in the fact that in building a programming language, we start from syntax and only later — if 

at all — define its semantics. The second source is somehow similar but concerns programs: we first write a 

program and only then try to prove it correct.  

To build a logic of programs for a programming language, one must first define its semantics on a mathe-

matical ground. Since 1970-ties it was rather clear for mathematicians that such semantics to be “practical” 

must be compositional, i.e., the meaning of a whole must be a composition of the meanings of its parts. Later 

such semantics were called denotational — the meaning of a program is its denotation — and for about two 

decades, researchers investigated the possibilities of defining denotational semantics for existing program-

ming languages. Two most complete such semantics were written in 1980 for Ada [15] and for CHILL [36] 

in using a metalanguage VDM [14]. A little later, but in the same decade, a minor exercise in this field was a 

denotational semantics of a subset of Pascal written by myself in MetaSoft [24], the latter based on VDM.  

Unfortunately, none of these attempts resulted in the creation of software-engineering tools that would be 

widely accepted by the IT industry. In my opinion, that was unavoidable since, for the existing programming 

languages, a full denotational semantics simply cannot be defined (see Sec. 3). That was, in turn, the conse-

quence of the fact that historically syntaxes were coming first, and only later, researchers were trying to give 

them a mathematical meaning. In other words — the decision of how to describe preceded a reflation of what 

to describe.  

In addition to that, two more issues were complicating denotational models of programming languages. 

They were related to two mechanisms considered necessary in 1960-ties but ten years later almost totally 

abandoned. One was a common jump instruction goto, the other — specific procedures that may take them-

selves as parameters (Algol 60, see [5]). The former had led to the continuations (see [75]), the latter to re-

flexive domains (see [74]). Both contributed to the technical complexity of denotational models, which was 

discouraging not only for practitioners but also for mathematicians.  

The second group of problems followed from an implicit assumption that in the development of mathemat-

ically correct programs, the development of programs should precede the proofs of their correctness. Although 



Andrzej Blikle (in cooperation with Piotr Chrząstowski-Wachtel), A Denotational Engineering of Programming Languages     14 

 

this order is quite evident in mathematics — first a theorem (a hypothesis) and then its proof — it is somewhat 

unusual for engineers who should first perform all necessary calculations (the proof) and only then build their 

bridges or airplanes.   

The idea “first a program and its correctness proof later” seems not only irrational but also practically rather 

unfeasible for two reasons. 

First reason follows from the fact that a proof of a theorem is usually longer than the theorem itself. 

Consequently, proofs of program correctness should contain thousands, if not millions of lines. It makes 

“hand-made proofs” somewhat unrealistic. In turn, automated proofs were not possible due to the lack of 

formal semantics of existing programming languages.  

Even more critical seem, however, the fact that programs that are supposed to be proved correct are usually 

incorrect! Consequently, correctness proofs are regarded as a method of detecting errors in programs. It means 

that we are first doing things wrong to correct them later. Such an approach does not seem very rational, either.  

As an attempt to cope with the mentioned problems, I am showing in the book a mathematical method of 

designing programming languages with denotational semantics. To illustrate this method, an exemplary pro-

gramming language Lingua is developed from denotations to syntax (first publication of that method in [25]). 

In this way, the decision of what to do (denotations) precedes the choice of how to express it (syntax).  

Mathematically both the denotations and the syntaxes constitute many-sorted algebras (Sec. 2.11), and the 

associated semantics is the homomorphism from syntax to denotations. As turns out, there is a simple method 

— to a large extent, algorithmizable — of deriving syntax from (the description of) denotations and the se-

mantics from both of them.  

At the level of data structures, Lingua covers booleans, numbers, texts, records, arrays, and their arbitrary 

combinations plus SQL databases. It is also equipped with a relatively rich mechanism of types, e.g., covering 

SQL-like integrity constraints and with tools allowing the users to define their own types structurally. At the 

imperative level, this language contains structured instructions, type definitions, procedures with recursion 

and multi-recursion, and some preliminaries of object programming.  

The issue of concurrency is not tackled in the book since the development of a “fully” denotational seman-

tics for concurrent programs (if at all possible) would require separate research5. 

Of course, Lingua is not a real language since otherwise, the book would become unreadable. It is only 

supposed to illustrate the method which (hopefully) may be used in the future to design and implement a real 

language of sequential programming. 

Ones we have a language with denotational semantics, we can define program-construction rules that 

guarantee the correctness of programs. This method was for the first time sketched in my paper [21], and in 

this book is described in Sec. 7 and Sec. 86. It consists in developing so-called metaprograms, which are 

programs that syntactically include their specifications. The method guarantees that if we compose two or 

more correct programs into a new program or if we transform a correct program, we get a correct program 

again. The correctness proof of a program is hence implicit in the way the program has been developed.  

Basic mathematical tools used in the book are the following: 

1. fixed-point theory in partially ordered sets, 

2. the calculus of binary relations, 

3. formal-language theory and equational grammars, 

 
5 There exist mathematical semantics of concurrency which can be said to be only “partially denotational”. An example 

of such a solution is a “component-based semantics” (cf. [13]), where the denotations of programs’ components are 
assigned to programs in a compositional way (i.e. the denotation of a whole is a composition of the denotations of its 
parts), but the denotations themselves are so called fucons whose semantics is defined operationally. 

6 The philosophy of developing correct programs rather than proving programs correct, although not based on denota-
tional semantics, was elaborated nearly a half century ago by Edsger W. Dijkstra on the ground of his method of 
weakest preconditions (see [44] and [45]).  
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4. fixed-point domain-equations based on so-called naive denotational semantics (cf. [33]),  

5. many-sorted algebras, 

6. abstract errors as a tool for the description of error-handling mechanisms, 

7. three-valued predicate calculi of McCarthy and Kleene, 

8. the theory of total correctness of programs with clean termination. 

These tools are described in Sec. 2 and Sec. 7, which should make the book self-contained. The reader is only 

expected to be familiar with the preliminaries of set theory and mathematical logic and to have basic experi-

ence in programming.  

In constructing Lingua, I assumed three priorities regarding the choice of programming mechanisms: 

• the priority of the simplicity of the model — the simplicity of denotations, syntax, and semantics; e.g., 

the resignation from goto instruction and self-applicative procedures, 

• the priority of the simplicity of metaprogram construction rules; e.g., the assumption that the declara-

tions of variables, types, and procedures should always be placed at the beginning of a program, 

• the priority of protection against “oversight errors” of a programmer; e.g., the resignation of global 

variables in imperative procedures and of side-effects in functional procedures. 

All these commitments forced me to give up some programming constructions which — although denotation-

ally definable — would lead to complicated descriptions and even more complicated program-construction 

rules.  

It is worth mentioning in this place that the priority of simplicity is not new in the history of programming 

languages. For that very reason, programming-language designers abandoned goto-s (see [43]) as well as 

self-applicative procedures.  

1.2 What is in the book? 

I am deeply convinced that one can talk about programming in a precise and transparent way. I also believe 

that taking responsibility for their products by software engineers should be possible in the same way as it is 

in the case of the engineers of cars, bridges, or airplanes. On the other hand, I am aware that the existing tools 

for software engineers do not allow for the realization of any of these goals.  

As I mentioned already in the Foreword, the book contains many thoughts developed in the years 1960-

1990 that later have been abandoned. One of the few teams developing these ideas was working in the Institute 

of Computer Science of the Polish Academy of Sciences, and I had the pleasure to chair it. At that time, we 

were developing a semi-formal metalanguage called MetaSoft dedicated to formal definitions of program-

ming languages (cf. [24]). This language is used in the book. 

The book starts with a short description of Lingua, which is later developed and described throughout the 

book. 

Sec.2 is devoted to the introduction of all mathematical tools that are listed in Sec. 1.1 except the program-

correctness issue.  

Sec.7 includes a general theory of partial and total correctness of programs. These concepts are formulated 

on the ground of binary relations, which allows concentrating on the main subject without technical details of 

programming languages. 

The remaining part of the book is devoted to the construction of denotational models for successive pro-

gramming mechanisms in the Lingua series. 

Sec.3 contains a general discussion of algebraic and denotational models of programming languages that 

are later exploited in the subsequent sections of the book. 
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Sec. 4 is devoted to the development of a general model of data structures and types that can be used to 

describe data- and type-mechanisms of a sufficiently large class of programming languages. In this model, a 

type is a pair that consists of a body that describes the structure of a data, e.g., a list of records, and a yoke that 

describes other properties of data, e.g., that in each of these records the sum of numbers assigned to attributes 

salary and commission should be less than 10.000. Such yokes are typical in SQL-based languages, although 

they are not named in this way there. A language covering these mechanisms is called Lingua-A (A stands 

for “applicative”). It consists of expressions only, i.e., contains neither declarations nor instructions. It is not 

a prototype of an applicative language but only an applicative layer of a general-purpose programming lan-

guage.  

Sec.5 contains a model of Lingua-1 that covers the whole Lingua-A plus structured instructions, variable 

and type- declarations, and some mechanism allowing programmers to build types in a bottom-up way. Types 

may be given names that are later stored in memory.  

In Sec.6, Lingua-1 is enriched to Lingua-2 by introducing procedures both imperative and functional. 

Recursion and multi-recursion are covered as well. 

Sec.8 is devoted to the idea and techniques of validating programming, which I investigated in the years 

1970/80. As was already explained in Sec.1.1, it consists in building metaprograms by using constructors that 

guarantee metaprogram correctness. The language for validating programming in Lingua-2 is called Lingua-

V2 (V for “validating”).  

Sec.9 and 10 are devoted to the extension of Lingua-2 by some tools typical for SQL-based languages. 

That version of Lingua is called Lingua-SQL.  

I am aware of the fact that the content of the book represents a very restricted part of the world of today’s 

programming languages. However, something had to be chosen to begin with. Lingua contains, therefore, 

only a selection of programming tools that have been known for many years, and that are still in use. In the 

future, I shall try to complete my models with those vehicles that my readers will consider necessary. I also 

hope that maybe some of you will undertake this challenge. Please feel invited to cooperate.  

1.3 What is this book not offering? 

As I explained in the Foreword and in Sec.1.1, the reason why I have written this book is the lack of mathe-

matical tools that would allow software producers to take such responsibility for their products as is usual in 

many other industries such as, e.g., automotive or aircraft manufacturing or in the sector of civil engineering. 

It does not mean, however, that the book offers a tool ready to be used today by IT industry. What I am trying 

to offer is only a suggestion of where to research for such tools and an associated mathematical framework.  

To better explain what I mean, let me refer to the concept of product quality as understood in the field of 

Total Quality Management. By the quality of a product, we mean the degree of the satisfaction of its user. 

Product quality is usually measured by the number of faults in the product ― the fewer faults, the higher the 

quality ― where an error is any such product’s property that the user “has the right not to expect”. E.g., if we 

order a beer, we have the right not to expect it to be warm, unless we are requesting a mulled beer.  

The quality of a product is therefore not an immanent property of a product, but rather a relation between 

a product and the expectations of its user. Paradoxically we can increase the quality of a product without 

changing the product itself when we honestly describe all its faults. Unfortunately, this approach is not a usual 

practice since it would lower the chances of selling the product. 

In the case of software, user expectations are described by a specification that a program should fulfill. The 

quality of a program consists therefore in: 

1. the compatibility of program specification with the expectations of its user, 

2. the compatibility of the program itself with the specification. 
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In my book, I am tackling only the second aspect. My choice is not caused by the fact that the first problem is 

less important, or that it has already been solved, but only because the second problem was the main subject 

of my research for two decades and therefore I dare to talk about it now7.  

In the end, I have to very strongly emphasize again that the virtual language Lingua is not regarded as a 

practical programming language, although maybe such a language will grow from Lingua in the future. At 

present, it only offers a platform where to explain the constructions and the models discussed in the book. I 

have tried to cover in Lingua the majority common mechanisms that are present in languages that are known 

to me today.  

1.4 What is original in this approach? 

By “this approach”, I understand the ideas and techniques described in my early papers from [18] to [28] 

published in the years 1972-2020, which have been summarised and extended in the present book. All these 

ideas are based on concepts known for a long time. In the list below I give references to the earliest papers on 

a given subject, and to major contributions that followed. 

• denotational semantics of D. Scott’s and Ch. Strachey’s ([75] 1971, [74] 1977), 

• generative grammars of N. Chomsky ([37] 1956, [39] 1957, [40] 1959, [41] 1962, [49] 1966, [16] 

1971), 

• C.A.R Hoare’s logic of programs (the founding paper [55] 1969, and surveys [4] 1981, [5] 2020, [6] 

2020), 

• many-sorted algebras introduced to the mathematical foundations of computer science by J. A Goguen, 

J.W, Thatcher, E.G. Wagner and J.B Wright ([51] 1977), 

• three-valued propositional calculus of J. McCarthy (cf. [65] 1967), 

• abstract errors in program’s semantics originally introduced by Joe Goguen ([51] 1978, [23] 1981, [11] 

1984,  [24] 1987 [77] 1988, [26] 1988) 

What, I believe, is — in this or another way — original in the presented approach, is the following: 

1. Programming language design and development:  

1.1. A formal, and to a large extent, an algorithmic method of systematic derivation of syntax from 

denotations and a denotational semantics from both of them ([25] 1987, [27] 1989). 

1.2. The idea of a colloquial syntax which allows making syntax user-friendly without damaging a 

denotational model ([27] 1989). 

1.3. The systematic use of error-elaboration in programs supported by a three-valued predicate calculus 

([23] 1981, [26] 1988). 

1.4. Denotational model based on set-theory rather than on D. Scott’s reflexive domains, which makes 

the model much simpler and easier to be formalized ([33] 1983). 

1.5. A model of data-types that covers not only structured and user-defined types but also SQL-like 

integrity constraints (this book). 

2. The development of correct programs 

2.1. A method of systematic development of correct programs with their specifications, seen as an al-

ternative, to proving the correctness of (earlier developed) programs ([21] 1979, [22] 1981) 

2.2. The use of three-valued predicates to enrich Hoare’s logic by a clean termination property ([23] 

1981). 

 

7 I am deeply convinced that the first problem is equally fascinating as the second. I would very much welcomed any 
initiative of a cooperation in this field.  
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3. General mathematical tools 

3.1. Equational grammars applied in defining the syntax of programming languages ([18] 1972). 

3.2. A three-valued calculus of predicates applied in designing programming languages and in defining 

sound program constructors for such languages ([21] 1979, [22] 1981). 

1.5 Lingua from bird’s-eye view 

To structure my book, Lingua is built layer-by-layer, as explained in Sec.1.2. Below I show a condensed and 

only half-formalized description of the language without entering into technical details. I also refrain from 

describing the process of language development and concentrate on its target version. This section is addressed 

to the readers who wish to grasp the idea of Lingua before they proceed to its technical details. 

1.5.1 Notational conventions 

Below I shall use the following notation (full description and justification in Sec. 2.1): 

• a : A means that a is an element of the set A; according to the denotational dialect “sets” are most 

frequently called “domains”, 

• f.a denotes f(a), and f.a.b.c denotes ((f(a))(b))(c); intuitively f takes a as an argument and returns 

the value f(a) which is a function which takes b as an argument and returns the value (f(a))(b), 
which is again a function… 

• A → B denotes the set of all partial functions from A to B, i.e., functions possibly undefined for 

some elements of A,   

• A ⟼ B denotes the set of all total functions from A to B, i.e., functions undefined for all elements 

of A; of course, each total function is a particular case of a partial function, 

• A ⟹ B denotes the set of all function from A to B defined for only finite subsets of A; such func-

tions are called mappings, and of course, each mapping also is a particular case of a partial function, 

• A|B denotes the set-theoretic union of A and B, 

• A x B denotes the Cartesian product of A and B, 

• tt and ff denote logical values „true” and „false” respectively, 

• many-character symbols like dom, bod, com denote metavariables running over domains and, if 

written with parentheses as ‘abdsr’ denote themselves, i.e., metaconstants.  

In order to distinguish between meta-level of phrases written in MetaSoft and the level of phrases written in 

Lingua, the former level will be typeset in Arial and the latter in Courier New.  

1.5.2 Data and (their) types 

So far data in Lingua may be split into three groups: 

• simple data including booleans, numbers, and words (finite strings of characters), 

• structural data including list, many-dimensional arrays, records, and their arbitrary combinations, 

• SQL-data, including rows and tables that carry simple data and databases that carry tables.  

Structural data may „carry” simple data as well as other structural data. That means that we may build “deep” 

data structures, e.g., records that carry lists of arrays. Lists and tables carry data of the same type, whereas in 

records, data assigned to attribute may be of different types.  

Arrays are formally one-dimensional, but since their elements may be other arrays, we may construct arrays 

of arbitrary dimensions. 
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Databases are ― simplifying a little ― records of tables, i.e., finite functions from identifiers to tables, 

tables are ― simplifying again ― one-dimensional arrays of rows and rows are records that carry simple data.  

Lingua has been equipped with a mechanism of types that covers the typical mechanism of programming 

languages. By a “mechanism of types,” I understand programming tools that allow programmers to define 

their types for future use either in declaring new types or in declaring variables. This mechanism is described 

in Sec. 4.3.5, and in Sec. 4.4.4. 

Types are pairs consisting of a body and a yoke. With every type, we associate a set of data called the clan 

of this type. 

Intuitively a body describes the “internal structure of a data” ― e.g., that a data is a number, a list, or a 

record ― and formally is a combination of tuples and mappings. The bodies of simple data are one-element 

tuples of words: (‘boolean’), (‘number’) or (‘word’). The bodies of lists and arrays are respectively of the 

form (‘L’, body) or (‘A’, body) where body is shared by all the elements of a list/array and where the initials 

‘L’ and ‘A’ indicate that we are dealing with a list type or with an array type respectively. A record body is of 

the form (‘R’, body-record) where body-record is a record of bodies such as, e.g.: 

Ch-name   :  (‘word’), 

fa-name   :  (‘word’), 

birth-year   :  (‘number’), 

award-years : (‘A’, (‘number’)),                            (1.5-1) 

salary    :  (‘number’), 

bonus    :  (‘number’) 

The words on the left-hand-side of colons are identifiers called attributes. The first three attributes and the last 

two have simple bodies, whereas the fourth one ― an array body. For the sake of further discussions, this 

record-body will be referred to as employee. 

With each body bod, we associate the set of data denoted by CLAN-Bo.bod. The function CLAN-Bo is 

defined inductively over the structure of bodies. E.g., the set CLAN-Bo.employee contains records with 

numbers, words, and one-dimensional number arrays assigned to the attributes.  

Next important concept from the “world” of data and types is a composite that is a pair (dat, bod) consisting 

of a data and its body, i.e., such that: 

dat : CLAN-Bo.bod 

Having defined composites, we can define transfers and yokes. Transfers are one-argument functions that 

transform composites into composites, and yokes are transfers with boolean composites as values. By a bool-

ean composite, we mean (tt, (‘boolean’)) or (ff, (‘boolean’)). Transfers may also assume abstract errors as 

values (see later). 

 Mathematically yoks are close to one-argument predicates on composites8. An example of a yoke expres-

sion that describes a property of composites whose body is employee is the following9: 

record.salary + record.bonus < 10000, 

The yoke which is the denotation of this expression is satisfied whenever its argument is a record composite 

with (at least) the attributes salary and bonus, and the data corresponding to these attributes satisfy the 

corresponding inequality. In this example 

record.salary + record.bonus  

 
8 They “are closed to predicates” rather than simply “are predicates” since they assume as values composites and 

abstract errors rather than just boolean values tt and ff. Consequently their logical constructors and, or and not are 
not the classical constructors but three-valued constructors of a calculus defined by John McCarthy (Sec. 2.9).  

9 Here we anticipate future notational conventions according to which syntax of Lingua is typeset in Courier New. 



Andrzej Blikle (in cooperation with Piotr Chrząstowski-Wachtel), A Denotational Engineering of Programming Languages     20 

 

is a transfer that is not a yoke. It transforms record composites into number composites.  

Yokes understood in our way appear in SQL and are called integrity constraints. As a matter of fact, they 

have been introduced into our model in order to cope with SQL data, although now they seem to may also 

have other applications. 

Transfers have merely a technical role. We need them only to define an algebra where yokes may be built. 

With every yoke we associate its clan: 

 CLAN-Yo.yok = (com | yok.com = (tt, (‘boolean’))} 

which consists of composites that satisfy that yoke.  

A pair that consists of a body and a yoke is called a type. With every type typ = (bod, yok) we associate 

its clan, which is the set of data whose body is bod, and such that (dat, bod) satisfies yok. Therefore: 

CLAN-Ty.(bod, yok) = {dat | dat : CLAN-Bo.bod and (dat, bod) : CLAN-Yo.yok} 

The last concept associated with data and types is a value, also called typed data. A value is a pair (dat, typ), 
such that dat : CLAN-Ty.typ. A value is, therefore, a pair (dat, (bod, yok)), which can be written as ((dat, 
bod), yok), i.e., (com, yok) or as (dat, bod, yok). In other words, value may be regarded either as a pair 

data-type or as a pair composite-yoke, or as a triple.  

Values are created in the course of data-expressions evaluation (see a little later). All data operations in 

Lingua are defined as operations on values equipped with a mechanism of checking if the arguments “deliv-

ered” to an operation have appropriate bodies. E.g., if we try to put a word on a list of numbers, the corre-

sponding operation will generate an error message. 

Values are assigned in memory states to the identifiers of variables and are passed to procedure calls as 

actual parameters. An assignment instruction ― i.e., an instruction that assigns a value to a variable ― may 

only change the data assigned to a variable but never its type. Yokes may only be changed by a special yoke-

oriented instruction. 

Let us sum up the list of mathematical entities associated with the concepts of data and their types: 

• data are primary mathematical beings processed by programs, 

• bodies are finitistic objects that describe “internal structures” of data, 

• composites are pairs (dat, bod), where dat : CLAN-Bo.bod, 

• transfers are one-argument functions on composites and errors, and yokes are transfers that return 

boolean composites or abstract errors as their values, 

• types are pairs that consist of a body and a yoke; as we are going to see later, in memory states types 

will be assigned to type constants, and type expressions will evaluate to types, 

• values are pairs consisting of a data and (its) type; in states, data are assigned to variable identifiers, 

and data expressions evaluate to values. 

Similarly, as in many programming languages (although not in all of them) types in Lingua have been 

introduced for four reasons: 

1. to define a type of a variable when it is declared, and to assure that this type remains unchanged during 

program executions, 

2. to ensure that a data which is assigned to a variable by an assignment is of the type consistent with the 

type of that variable, 

3. to ensure that a similar consistency takes place when sending actual parameters to a procedure or when 

returning reference parameters by a procedure, 

4. to ensure that in evaluating an expression, an error message is generated whenever data “delivered” to 

a data constructors are of inappropriate types, e.g., when we try to add a word to a number. 
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1.5.3 Abstract errors 

An essential feature of Lingua is the inclusion of error messages in its model. For this purpose, the domains 

(sets) of bodies, composites, and types are “equipped” with elements that are called errors. Mathematically 

errors may be anything, but in Lingua they are words, e.g. 

‘division-by-zero’ or 

‘record-expected’ 

that intuitively describe the cause of an error. All operations on composites, bodies, and types are also defined 

on errors, and the majority of them are error-transparent. The latter means that if an argument of an operation 

is an error, then the resulting value is the first error that appears in the course of a computation. Intuitively the 

appearance of an error means that program execution aborts, and an error message is displayed on a monitor. 

It may also happen that an error causes the execution of an error handling procedure (see Sec. 5.1.5.5 and 

Sec.10.9.6.4).  

A special case of error-handling operations are boolean operations (Sec.2.9) that handle errors in accord-

ance with McCarthy’s propositional calculus. For instance: 

ff and ee = ff 
ee and ff = ee 

where ee represents an error or a non-terminating computation. The arguments of conjunction are evaluated 

from left to write, and if the first argument evaluates to ff, then the evaluation of the second argument is 

skipped. In this way, we maybe avoid an error message or a non-terminating evaluation. E.g. the boolean 

expression 

x ≠ 0 and 1/x > 10 

assumes the value ff for x=0 even though 1/x > 10 would generate an error or would loop infinitely. In 

McCarthy’s calculus whenever x = 0, the evaluation of 1/x > 10 is postponed. 

Particular cases where errors are signalized are overflows. Formally for every domain of data, a predicate 

is defined that “reacts” to overflows. 

1.5.4 Expressions 

Expressions are syntactic element and their denotations, i.e. their semantic meanings, are functions from states 

to values (data expressions) or from states to types (type expressions). In order to define these concepts we 

have to start with the definition of a domain of states. This domain is defined by so called domain equations: 

State   = Env x Store                                (state) 
Env   = TypEnv x ProEnv                   (environment) 
Store  = Valuation x (Error | {‘OK’})                        (store) 

Valuation = Identifier ⟹ Value                      (valuation) 

TypEnv  = Identifier ⟹ Type                       (type environment) 

ProEnv  = Identifier ⟹ Procedure | Function                (procedure environment) 

where Error is some fixed set of errors. As we see, states are storing values, types, procedures, and functions 

(functional procedures) assigned to identifiers as well as errors stored in a “dedicated register”. If a state does 

not carry an error then this register stores the word ‘OK’.  

The denotations of data expressions and the denotations of type expressions are the elements of an algebra 

of expression denotations from which a syntactic algebra of expressions may be derived. A function from 

expressions to their denotation is called the semantics of expressions10. 

Data-expression denotations are partial functions from states to composites or error messages: 

 
10 This “function” is in fact a homomorphism from the algebra of expressions into the algebra of expression denotations. 
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DatExpDen = State → Value | Error 

For every operation on data, there is an operation on composites, and for every operation on composites, there 

is a constructor of data-expression denotations. E.g., the denotation of the expression 

x + y 

is a function that for a given state sta first successively checks the following conditions: 

• Is sta carrying no error? 

• Are there any values assigned to identifiers x and y in sta? 

• Are these values numbers? 

• Is their sum less than the largest number representable in the current implementation? 

If all these checks terminate positively, then the function creates a value (dat, (‘number’), TT), where dat is 

the sum of the numbers assigned to x and y, and TT is a yoke which is always satisified. If some of these 

checks do not terminate successively then an appropriate error message is generated, e.g., 

‘number-expected’ 

and the computation terminates. In particular, if the input state carries an error, then this error becomes the 

result of the computation. 

Notice that data expressions represent partial functions since they may call functional procedures whose 

executions may loop infinitely.  

Contrary to data expressions, the denotations of type-expressions are total functions from states to types or 

error messages: 

TypExpDen = State ⟼ Type | Error 

The constructors of such denotations are defined similarly as for data expressions, although now they base on 

type operations rather than on data operations. E.g., the denotation of the following type expression: 

record-type 

Ch-name    as word, 

fa-name    as word, 

birth-year   as number, 

award-years  as number-array ee 

salary    as number 

bonus     as number 

ee 

is a function on states that creates a record type or generates an error. This expression refers to two built-in 

types word and number and one user-defined type number-array (arrays of numbers). A typical case of 

a type-expression evaluation generating an error may be an operation of the removal of an attribute of a record-

type if this attribute does not appear in the record. 

Data-expression denotations and type-expression denotation, together with their constructors constitute an 

expression-denotation algebra (Sec. 4.4). From that algebra, we derive its syntactic counterpart ― an expres-

sion algebra (Sec. 4.5).  

1.5.5 Instructions 

Expressions belong to the applicative part of our language. Their denotations take states as arguments but 

neither create them nor change. Such tasks are performed by instructions, and by variable-, type- and proce-

dure declarations. All of them belong to the imperative layer of the language.  

Instruction denotations are partial functions from states to states, which means that their domain is the 

following: 



Andrzej Blikle (in cooperation with Piotr Chrząstowski-Wachtel), A Denotational Engineering of Programming Languages     23 

 

InsDen = State → State 

Contrary to expression denotations, which may generate an error, instruction denotations write an error to the 

error register. The denotations of the majority of instructions are transparent relative for error-carrying states, 

i.e., they do not change such states but only pass them to the subsequent part of a program. However, an error 

may also cause an error-handling action. 

The basic atomic instruction is, of course, the assignment of a value to a variable identifier. Syntactically 

assignment instructions are of the form: 

identifier := data-expression 

The denotation of an assignment changes an input state into an output state in the following steps: 

1. checking if the input state does not carry an error, and if this is the case, then the input state becomes 

the output state, and the execution terminates; in the opposite case 

2. checking if the identifier has been declared, i.e., if in the input state it is bound to a value or to a pseudo 

value (see later); if this is not the case then an error message ‘identifier-undeclared’ is put to the error 

register; in the opposite case  

3. trying to evaluate the data expression; if this attempt generates an error then this error is put to the 

error register; in the opposite case 

4. checking if the value computed from the expression has a body conformant with the body of the iden-

tifier’s type, and if it is not the case then an error message is put to the error register; in the opposite 

case 

5. checking if the value computed from the expression has a composite that satisfies the yoke of the type 

of the variable, and if it is not the case then an error message is loaded to the error register; in the 

opposite case 

6. the computed value is assigned to the identifier with the yoke of the variable (not of the value!) re-

maining unchanged. 

The remaining instructions belong to one of the following six categories where the first three are atomic in-

structions, and the remaining three are structural instructions, i.e., instructions composed of other instructions 

and expression: 

1. the replacement of a yoke assigned to a variable by another one, 

2. the activation of an error-handling procedure, 

3. the call of an imperative procedure, 

4. the sequence of instructions, 

5. the conditional composition of instructions of the form if-then-else-fi, 

6. the loop while-do-od. 

Of all these instructions, only procedure calls have to be explained.  

When a procedure is called, it gets two lists of actual parameters: value parameters and referential param-

eters, the values of which are assigned to the corresponding formal parameters, which may also be value- and 

referential. After the execution of a procedure body, the values of formal referential parameters are passed to 

the corresponding actual referential parameters. 

The mechanism of parameter passing is the only communication channel between a procedure body and 

its hosting program. Inside a procedure body, only local variables are available, and these variables are not 

available outside the procedure. It is to be emphasized that this decision has not been “forced” by the fact that 

we are building a denotational model. It has been taken ― like many others ― for pragmatic reasons that I 

shall try to justify when it comes to their more technical discussion.  
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Contrary to variables, all types and procedures declared in the declarative part of a program (see later) have 

a global character, i.e., they are visible inside all procedure bodies. In a procedure body, one may also declare 

local variables, procedures, and types that are not available outside the procedure body. It is again a pragmatic 

(engineering) decision rather than a denotational necessity. 

For imperative procedures, there is a mechanism of both a direct recursion (a procedure calls itself) and an 

indirect recursion (procedure A calls procedure B, which calls procedure C which calls… procedure A).  

The denotations of data- and type expressions, of instructions, of variable-, type-, and procedure declara-

tions, and of programs (see sections that follow) constitute a many-sorted algebra of denotations which is 

described in Sec. 5 (without procedures) and in Sec. 6 (with procedures). In these sections also the correspond-

ing syntactic algebras are described. 

1.5.6 Variable- and type declarations 

Variable-declaration denotations are total functions that map states into states: 

VarDecDen = State ⟼  State 

assigning types to identifiers and leaving their data undefined. More formally, they assign pseudo-values, 

which are pairs of the form (Ω, typ), where Ω is an abstract element called a pseudo-data. Syntactically a 

single declaration is of the form: 

let identifier be type-expression tel 

Variable declarations are similar to assignments with the difference that in the former case, an error is 

signalized whenever the identifier is bound in the input state to a pseudo-value, a value, a type, or a procedure. 

In each such case, the error message ‘identifier-not-free’ is generated. It means that a variable may be declared 

in a program only once. Subsequently, its value may be changed only by changing its composite and possibly 

the yoke. Bodies may be changed only in the case of database tables and only if we add new attributes or if 

we remove existing attributes (an engineering decision).  

The denotations of type declarations are similar to those of variable declarations with the difference that 

they assign types rather than pseudo-values to identifiers. 

TypDecDen = State ⟼  State 

An identifier that is bound to a type in a state is called a type constant. Notice that “constant” rather than 

“variable” since the type assigned to it, cannot be changed in the future (an engineering decision). 

Similarly, as in the case of assignments, also type definitions, and variable declarations may be combined 

sequentially using a semicolon. 

1.5.7 Procedure declarations 

Procedures may be imperative or functional. The former are functions that receive two lists of actual parame-

ters ― value parameters and reference parameters ― and return partial functions on stores11. Functional pro-

cedures take only value parameters and return partial functions on stores:  

ipr  : ImpPro  = AcPaDe x AcPaDe ⟼ Store → Store  

fpr  : FunPro  = AcPaDe     ⟼ Store → (Value | Error) 

In these equations, AcPaDe is a domain of actual-parameter lists. Notice that we do not talk here about 

procedure denotations but about procedures as such since they are “purely denotational” concepts. Conse-

quently, they do not have syntactic counterparts. At the level of syntax, we have only procedure declarations 

 
11 The fact that procedures transform stores rather than states is a technical trick that allows to avoid a self-application 

of a function, i.e. a situations where a function takes itself as an argument. More about that problem in Sec. 3.1. Of 
course, procedure calls are instructions and therefore transform states into states.  
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and procedure calls, which, of course, have their denotations. Syntactically an imperative-procedure declara-

tion is of the form: 

proc Identifier (val for-val-par ref for-ref-par)  

program  

end proc  

where program is a program (see later). Both parameter lists are lists of variable identifiers each followed 

by a type expression, e.g. 

(val age, weight as number, name as word  

ref patient as patient-record)  

Expressions, except single-identifier expressions, are not allowed as value parameters since this would com-

plicate the model and program-construction rules (an engineering decision).  

If we want to declare a group of mutually recursive procedures, then we use a multiprocedure declaration 

of the form: 

begin multiproc 

DekPro-1; 

DekPro-2; 

… 

DekPro-n 

end multiproc 

Functional procedures are partial functions that transform stores into composites. They also do not have syn-

tactic counterparts, and their declarations are of the form: 

fun identifier (for-parameters) 

program   

return expression as type-expression 

The call of such a procedure first executes the program and then evaluates the expression in the output state 

of that program. The value generated by that expression becomes the result of the procedure call. Such a call 

has no side-effects, i.e., it never modifies a state (an engineering decision). In a particular case, the program 

may be trivial “doing nothing”, and the expression may be reduced to a single identifier. 

Procedures discussed above accept as parameters only variable identifiers, i.e., identifiers that bind values. 

All types and procedures defined in a hosting program of a procedure call are visible in the procedure body as 

global entities, and therefore they do not need to be passed as parameters (an engineering decision).  

In the version of Lingua described above, procedures cannot take other procedures as parameters. It is 

shown in (Sec. 6.6) how to overcome this restriction by constructing a hierarchy of procedures that can take 

as parameters only procedures of a lower rank than themselves. This decision protects procedures from taking 

themselves as parameters since this leads to models that are not denotational in our sense12.  

1.5.8 Typological procedures 

Denotationally typological procedures are similar to functional procedures, but instead of composites return 

types, and their bodies are type expressions.  

Since typological procedures are procedures, they do not appear on the level of syntax, where we only have 

typological procedure declarations and typological procedure calls. An example of a declaration may be as 

follows: 

type list-of-employees(employee) 

 list-of.employee 

 
12 Formally speaking this decision is forced more by set-theoretical argument than by the denotationality of our model 

(see Sec. 3.1). 
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end type 

Here we declare a typological procedure list-of-employees whose single formal parameter is the iden-

tifier employee, which represents a future type of employee. The keyword list-of denotes a language-

based constructor of list types. If somewhere later in the program, we declare a type and give it the name 

accountant: 

set accountant as 
 record-type 

ch-name   as string, 

fa-name   as string, 

birth-year  as number, 

award-years as array-of number ee 

ee 

tes 

then we may declare a type of lists of accountants by calling our typological procedure with an actual param-

eter accountant: 

set list-of-accountants as list-of-employees(accountant) ee 

Here the call of a typological procedure plays the role of a type expression.  

In order to include typological procedures in our model, we have to define two constructors: 

1. a constructor of typological-procedure declarations, 

2. a constructor of typological-procedure calls. 

The first of them, given an identifier and typological-procedure components, returns a typological-procedure 

declaration, which belongs to the domain of declaration denotations: 

declare-typ-pro : Identifier x TypPar x TypExpDen ⟼ DecDen 

or in an “unfolded” form: 

declare-typ-pro : Identifier x TypPar x TypExpDen ⟼ State ⟼ State 

The denotation of a typological-procedure declaration, given: 

1. an identifier ide, 

2. a list of formal parameters tpa, 

3. a type-expression denotation ted, 

4. a type environment tye,  

first builds a typological procedure out of its components (2.-4.), and then assigns it to ide in the environment. 

The second constructor of our the algebra of denotations corresponds to a call of a typological procedure: 

call-typ-pro : Identifier x TypPar ⟼ TypExpDen   i.e. 

call-typ-pro : Identifier x TypPar ⟼ State ⟼ TypeE 

After all necessary checks, the typological procedure assigned to ide in the procedure environment is applied 

to the list of actual parameters and to the (call-time) type environment of the current state.  

The calls of typological procedures belong to type-expression denotations. In other words, calling a typo-

logical procedure is one of the possible ways of creating a type. 

1.5.9 Object programming 

Work on a denotational model of object-oriented programs is in progress at the moment. This section will be 

completed later. 
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1.5.10 SQL programming 

In typical programming languages that give access to SQL tools ― known in the literature as Application 

Programming Interface or Call Level Interface ― the interpreter of the hosting language activates procedures 

of an existing SQL engine. In our case, however, such a philosophy would not be acceptable. If we intend to 

equip Lingua with the constructors of correct programs, we have to build our SQL engine based on a denota-

tional model. 

Of course, we have to make sure that our database constructors are close enough to SQL standards. We 

cannot think, however, about full compatibility since in the first place first there is no one SQL standard, and 

second ― none of the existing standards is defined in a sufficiently precise way. We have to make sure only 

that Lingua-SQL programs can process SQL databases created in other implementations.  

Section 10 contains a denotational model of primary SQL constructors and in particular of queries, cursors, 

and views. 

1.5.11 Programs 

Programs in Lingua are composed of two consecutive parts: 

1. a declaration that consists of sequentially composed variable-, type- and procedure declarations, 

2. an instruction which a composition of atomic and structured instructions.  

This structure ― first all declarations and all instructions later ― is not a “denotational necessity” but con-

tributes to the simplicity of program-construction rules. 

1.5.12 Validating programming 

Very briefly, validating-programming consists of building metaprograms that are composed of two mutually 

nested layers: 

1. a programming layer that is a program in the defined sense, 

2. a descriptive layer which consists of pre- and post-conditions plus assertions (conditions) that are 

“nested” between instructions.   

A metaprogram is said to be correct, if for every initial state that satisfies the precondition the following is 

true: 

1. the program executes without looping or generating an error message, 

2. all assertions are satisfied during this execution, 

3. the terminal state of the program satisfies the postcondition. 

Our correctness is the total correctness of C.A.R Hoare (see [55]) but strengthened by the assumption that the 

program does not hang-up with an error message.  

Notice that in the classical theory of program correctness, the correctness is always related to a context of 

a precondition and a postcondition, whereas now we talk about the correctness as such, since the pre- and 

post-conditions are parts of the metaprogram. The inclusion of the descriptive layer allows for the construction 

of complex correct programs from simple ones.  

Below we see a simple example of a metaprogram, where isrt(n) denotes the integer part of the square 

root of n: 

 

let z, x be number 

 pre true                          (precondition) 
z := 1; 

x := 0; 
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asr z > 0 and x ≥ 0           

while z2 ≤ n do z:=2*z od; 

    x := 0; 

while z > 1 

     do  

      z := z/2; 

      if (x+z)2 < n then x:=x+z else x:=x fi 

     od 

  rsa                

post x = isrt(n) and z = 1                       (postcondition) 

The part of the program between asr con and rsa is called the range of condition con. If our metaprogram 

is correct, then the condition is satisfied by all intermediate states in its range.  

Correct-program construction starts from simple programs whose correctness is proved in a traditional way. 

The following programs are constructed from already existing programs in using construction rules that guar-

antee the correctness of the resulting program. Here is an example of such a rule that is used to construct a 

program consisting of a conditional instruction: 

(1) prc  dae or(not dae) 

(2) dec dec pre (prc and dae) sin-1 post poc 

(3) dec dec pre (prc and not dae) sin-2 post poc  

dec dec pre prc if dae then sin-1 else sin-2 fi post poc 

This rule we read as follows: 

If 

(1) every state that satisfies the precondition prc satisfies either the data expression dae or its nega-

tion (this assumption means that if the precondition is satisfied, then the branching data-expression 

dae evaluates to a boolean value, and therefore neither loops nor generates an error message), 

(2) metaprogram (2) is correct 

(3) metaprogram (3) is correct 

then 

 the metaprogram below the line is correct. 

This rule allows for the construction of a correct metaprogram starting from two correct metaprograms. Ob-

serve that in the classical predicate calculus, the metacondition (1) would be a tautology, but in our case ― 

due to the third logical value ― it is not.  
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Die Mathematiker sind eine Art Franzosen: Re-

det man zu ihnen, so ubersetzen sie es in ihre 

Sprache, und dann ist es alsobald ganz etwas ab-

ders.13 

Johann Wolfgang von Goethe 

2 METASOFT AND ITS MATHEMATICS 

When in the years 1970 to 1990 I was lecturing mathematical foundations of computer science to IT practi-

tioners, I frequently heard an objection that there is definitely much too much of this mathematics that software 

engineers have to swallow. Bosses of IT departments expected that their teams could be “trained” in that new 

mathematics within one weekend and maximally two. Then I was trying to bring to their attention the fact that 

future engineers attend two to five semesters of mathematics during their university studies. The majority of 

this mathematics was, however created at the borderline between XIX and XX century and is oriented towards 

physics, astronomy, and classical engineering rather than informatics. 

When at the beginning of the second half of XX century mathematicians started to think about mathematical 

theories for computer science, some of the branches of mathematics earlier considered as “unpractical” — 

such as set theory, mathematical logic, or abstract algebras — became their convenient tools. A little later, 

new branches started to emerge: theory of abstract automata and formal languages, logics of programs, models 

of concurrent systems, and many others. Today mathematical foundations of computer science are large and 

sill fast-growing new branches of applied mathematics.  

Of course, in this section, I do not pretend to present even a sketch of that mathematics. I present only these 

tools, which I shall use in the books. I am conscious of the fact that for some readers going through Sec.2 may 

be quite a challenge. However, becoming familiar with MetaSoft will allow them to describe complex pro-

gramming constructions in a relatively simple way and — what is especially important — complete and un-

ambiguous.  

2.1 Basic notational conventions of MetaSoft 

MetaSoft is a semi-formal (i.e., not fully formalized) mathematical notation oriented towards formal descrip-

tions of programming languages. Since typically formulas that appear in such descriptions oversize everything 

we know from traditional mathematics, some new notational conventions will be introduced. In particular, 

when it comes to defining models of programming languages (starting from Sec. 3)  instead of using single-

letter symbols like a, b, c many-letter symbols are used such as sta (for “state”), den (for “denotation”), etc. 

To distinguish MetaSoft formulas in the text, they are printed in Arial font. At the end of the book, there is a 

list of most frequently used symbols (at this moment in may be incomplete).  

2.1.1 General mathematical notation 

Logical operators are given traditional names: and, or, not, tt, ff. The two last are logical constants “true” 

and “false”. For quantifiers, I shall use: 

∀ ― general quantifier (for all) 

 
13 Mathematicians are [like] a sort of Frenchmen; if you talk to them, they translate it into their own language, and then 
it is immediately something quite different. 
— Johann Wolfgang von Goethe, Maximen und Reflexionen, 2006 (Helmut Koopmann, ed.) 
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∃ ― existential quantifier (there exists) 

Instead of  i = 1,…,n I frequently write i = 1;n. By “iff”  I mean “if and only if”.  

2.1.2 Sets 

Symbol { } denotes the empty set and  

{a1,…an} or {ai | i = 1;n} 

denotes a finite n-element set. The fact that a is (or is not) an element of A shall be written as 

a : A  (a /: A) 

and the inclusion of sets shall be written as 

A ⊆ B 

By 

A | B  and A∩B 

we denote the union and the intersection of sets  A and B. If Fam is a family of sets then 

U.Fam 

denotes the union of that family. By 

A x B 

I denote the Cartesian product of sets. The expression: 

A x B x C x D 

denotes the set of tuples of the form (a, b, c, d)  The expression: 

A x (B x C) x D 

denotes the set of tuples of the form (a, (b, c), d), and analogously for other combinations of parentheses. For 

every n ≥ 0 the n-th Cartesian power Acn of a set A is the set of all tuples of the elements of A, i.e.: 

Ac0 = {()}       — the only element of that set is an empty tuple 

Acn = {(a1,…,an) | ai : A}  — for n > 0 

Using Cartesian power, we define two other operations: 

Ac+ = U.{Acn | n > 0} 

Ac* = Ac0 | Ac+ 

The set of all subsets of A and respectively of all finite subsets of A is denoted by 

Sub.A 

FinSub.A 

The following notations shall be used for sets of relations and functions: 

Rel.(A,B) — the set of all binary relations between A and B; i.e., the set of all subsets 

of A x B; more about binary relations in Sec.2.6, 

A → B — the set of all partial functions from A to B, i.e., functions that do not 

need to be defined for all elements of A,  

A ⟼ B — the set of all total functions from A to B, i.e., functions that are defined 

for all elements of A; notice that each total function is a partial function 

but not vice-versa, 
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A ⟹ B — the set of all mappings from A to B, i.e., functions defined for only a 

finite subset of A. 

Following this notation by 

f : A ⟼ B 

we mean that f is an element of the set A ⟼ B, i.e. is a total function from A to B and analogously for other 

operators creating sets of functions. This rule also explains why the traditional a ∈ A is written as a : A.  

2.1.3 Functions 

For practical reasons, the value of a function shall be written as f.a rather than f(a). Why this is practical will 

be seen a little later. The expression 

f.a = ?                                 (2.1-1) 

means that f is not defined for a. It does not mean that “?” is anything like an “undefined element”. The 

expression f.a = ? stands for  

not (∃b)(f.a=b) 

Analogously 

f.a = ! 

stands for (∃b)(f.a=b). For an arbitrary function 

f : A → B 

and an arbitrary set C by the truncation of  f to C we shall mean: 

f trun C = {(a, f.a) | a : A ∩ C}. 

The domain of f is the set where f is defined, i.e. 

dom.f = {a | a : A and f.a = !} 

In the sequel we shall also use the notation 

f [a/?] = f trun (dom.f – {a}) 

Another notation that will be used frequently comes from Haskell Curry and concerns many-argument func-

tion whose arguments are taken successively one after another, e.g.  

f : A → (B → (C → (D → E)))                         (2.1-2) 

The value of such a function should be formally written as 

((((f.a).b).c).d) 

 but Curry writes 

f.a.b.c.d  

which intuitively means that  

• function f takes a as an argument and returns as value a function f.a that belongs to the set B → (C → 
(D → E)) and next 

• function f.a takes as an argument an element b and returns as a value function f.a.b that belongs to the 

set C → (D → E), etc.  

This notation allows not only to avoid many parentheses but also to define function of “mixed” types like e.g. 

f : A → (B ⟼ (C → (D ⟹ E)))  or                       (2.1-3) 

f : (A → B) ⟼ (C → (D ⟹ E)) 
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Another simplifying convention allows to write 

f : A → B ⟼ C → D ⟹ E                         (2.1-4) 

instead of 

f : A → (B ⟼ (C → (D ⟹ E)))                       (2.1-5) 

The expression 

f : ⟼ A                                   (2.1-6) 

means that f is a zero-argument function with only one value that belongs to A. That value is denoted by 

f.() 

About formulas from (2.1-2) to (2.1-6) we say that they describe types or signatures of corresponding func-

tions. For instance we say that the function in (2.1-5) is of the type 

A → B ⟼ C → D ⟹ E 

For every (possibly partial) function 

f : A → A,  

by its n-th iteration where n = 0,1,2,…we shall mean the function 

fn : A → A 

defined in the following way: 

f0 is an identity function on A, i.e. f.a = a for every a : A, 

fn.a = f.( fn-1.a) for n > 0. 

In mathematical definitions of programming languages, we shall frequently use many-level conditional defi-

nitions of functions with the following scheme: 

f.x =  
p1.x ➔ g1.x 
p2.x ➔ g2.x 
…                                 (2.1-7) 
pn.x ➔ gn.x 

where each pi is a classical predicate, i.e., a total function with logical values tt or ff, and each gi is just a 

function. The formula (2.1-7) is read as follows: 

if p1.x is true, then f.x = g1.x and otherwise, 

if p2.x is true, then f.x = g2.x and otherwise, 

… 

Intuitively speaking, the evaluation of this function goes line by line and stops at the first line where pi.x is 

satisfied. Of course, to make such a definition of function f unambiguous, the alternative of all predicates pi.x 

must evaluate to “true”, which means that all these predicates must exhaust all cases. To ensure that condition 

at the last line, we frequently write true, which stands for the predicate, which is always true. It can also be 

read as “in all other cases”.  

In the scheme (2.1-7) we also allow the situation where, in the place of a gi.x we have the undefinedness 

sign “?” which means that for x that satisfies pi.x, the function f is undefined. This convention allows for 

conditional definitions of partial functions. 

In conditional definitions we also use a technique similar to defining local constants in programs. For in-

stance if f : A x B ⟼ C we can write 

f.x =  
p1.x  ➔ g1.x 



Andrzej Blikle (in cooperation with Piotr Chrząstowski-Wachtel), A Denotational Engineering of Programming Languages     33 

 

let  
(a, b) = x 

p2.a  ➔ g2.x 
p3.b  ➔ g3.x 
… 

which is read as: let x be a pair of the form (a, b). We can also use let in the following way: 

f.x =  
p1.x  ➔ g1.x 
let  

y = h.x 
p2.x  ➔ g2.y 
p3.x  ➔ g3.y, 
… 

All these explanations are certainly not very formal, but the notation should be clear when it comes to appli-

cations in the sequel of the book. A finite total function f : {a1,…,an} ⟼ {b1,…,bn} defined by the formula: 

f.x =  
x=a1 ➔ b1 
x=a2 ➔ b2 
…    
x=an ➔ bn 

shall be written as 

[a1/b1,…,an/bn]  or alternatively as [ai/bi | i = 1;n]. 

The empty function will be denoted by [ ]. Let f : A → B and g : C → D. The overwriting of  f by g is a 

function denoted by 

f⧫g : A|C → B|D  

and defined in the following way: 

(f⧫g).x = 
g.x = !   ➔ g.x 
g.x = ? ➔ f.x 

In particular this means that if f.x=? and g.x=?, then f⧫g.x=?. A particular case of overwriting is an update 

of a function written as f[a1/b1,…, an/bn] and defined by the formula 

(f[a1/b1,…, an/bn]).x = 
 x = a1 ➔ b1 

 … 
 x = a1 ➔ bn 

true  ➔ f.x 

2.1.4 Tuples 

An expression 

(a1,…,an) or alternatively (ai | i=1;n) 

denotes n-tuple. Consequently () denotes an empty tuple. The difference between tuples and finite sets is such 

that the order of elements in a tuple is relevant and repetitions are allowed, which is not the case for sets. E.g. 

{a, b, c ,c} = {a, c, b } = {a, b, c} = … 

(a ,b, c, c) ≠ (a, c, c, b) ≠ (a, b, c) 

where a, b and c are different with each other.  
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Tuples are used as mathematical models for several concepts in theoretical computer science and among 

others for pushdowns. In this area the following functions shall be used later on in the book: 

push.(b, (a1,…,an))  = (b, a1,…,an,) for n ≥ 0 

pop.(a1,…,an)   = (a2,…,an) for n ≥ 2 

pop.(a)      = () 

pop.()      = () 

top.(a1,…,an)    = a1     for n ≥ 1  

top.()       = ? 

An important operation on tuples is a Cartesian concatenation of tuples14: 

(a1,…,an) ₵ (b1,…,bm) = (a1,…,an, b1,…,bm). 

We shall also use two predicates: 

are-repetitions.(a1,…,an) = tt iff there exist i ≠ j such that ai = aj 

no-repetitions.(a1,…,an) = tt iff there are no i ≠ j such that ai = aj 

Tuples may also be regarded as functions from natural numbers into their elements i.e. 

(a1,…,an).i = ai 

Let now for a certain set A 

Tuple = Ac* 

be the set of all tuples over A. For sets of tuples the following functions shall be used: 

 

remove-repetitions : Tuple ⟼ Tuple 

remove-repetitions.(a-1,…,a-n) = 
 n = 0     ➔ () 
 n = 1     ➔ (a1) 
 a1 : {a2,…,an}  ➔ remove-repetitions.(a2,…,an) 
 true     ➔ (a1) ₵ remove-repetitions.(a2,…,an) 

 

join-without-repetition : Tuple x Tuple  ⟼ Tuple 

join-without-repetition.(tup1, tup2) = remove-repetitions.(tup1 ₵ tup2) 

 

common-part : Tuple x Tuple ⟼ Tuple 

common-part.( (a1,…,an), (b1,…,bm) ) = 
 n = 0  ➔ () 

m = 0 ➔ () 
 a1 : {b1,…,bm}  ➔ (a1) ₵ common-part.( (a2,…,an), (b1,…,bm) ) 
 true      ➔ common-part.( (a2,…,an), (b1,…,bm) )  

 

difference : Tuple x Tuple ⟼ Tuple 

difference. ( (a1,…,an), (b1,…,bm) ) = 
 n = 0     ➔ () 

 
14 This should be not confused with a language-theoretic concatenation of words (see Sec. 2.4). 
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m = 0    ➔ (a1,…,an) 
 a1 : {b1,…,bm} ➔ difference.( (a2,…,an), (b1,…,bm) )  
 true     ➔ (a1) ₵ difference.( (a2,…,an), (b1,…,bm) )  

 

The last operation selects these elements of a tuple that satisfy a given predicate. Let then 

p : A ⟼ {tt, ff, ee}  

be a three-valued predicate. With every such predicate, we associate a filtering function that removes from a 

tuple all elements a that do not satisfy p, i.e., such that p.a : {ff, ee}. 

filter.p : Tuple ⟼ Tuple 

filter.p.(a1,…,an) = 
 n = 0   ➔ () 
 p.a1 = tt  ➔ (a1) ₵ filter.p.(a2,…,an) 
 true   ➔ filter.p.(a2,…,an) 

2.2 Partially ordered sets 

Let A be an arbitrary set and let 

⊑ : Rel(A,A) 

be a binary relation in that set. Relation ⊑ is said to be a partial order in A if for any a, b, c : A the following 

conditions are satisfied: 

1. a ⊑ a          reflexivity 

2. if a ⊑ b and b ⊑ c then a ⊑ c  transitivity 

3. if a ⊑ b and b ⊑ a then a = b  weak antisymmetricity 

If only 1. and 2. are satisfied then ⊑ is said to be quasiorder. In the sequel we shall deal most frequently with 

partial orders.   

If a ⊑ b, then we say that a is smaller than b or that b is greater than a. If additionally a ≠ b, then we say 

that a is significantly smaller than b or that b is significantly greater than a.  

A pair (A, ⊑) is called a partially ordered set (abbr. POS), and the set A is called its carrier. The word 

“partial” means that not any two elements of A are comparable with each other. If however, 

for any a and b either a ⊑ b or b ⊑ a,  

then we say that this is a total order.  

Of course, every linear order is partial, and every partial order is quasiorder but not vice versa. An example 

of a partial order which is not total is the inclusion of sets. Such POS is called set-theoretic POS.  

Let B be a subset of a partially ordered A and let b : B. In that case 

• b is called a minimal element in B, if there is no a : B such that a ⊑ b and a ≠ b 

• b is called the least element in B, if for any a : B holds b ⊑ a, 

• b is called a maximal element in B, if there is no a : B such that b ⊑ a and a ≠ b, 

• b is called the greatest element in B, if for any a : B holds a ⊑ b. 

There exist partially ordered sets without a minimal element and sets where there is more than one such ele-

ment. However, if there is the least element in a set, then it is the unique minimal element and analogously for 

maximal and greatest elements.  
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An upper bound of B is such an element of A, which is greater than any element of B. Notice that an upper 

bound of a set does not need to belong to that set, but if it does belong, then it is the greatest element of the 

set. 

If the set of all upper bounds of B has the least element, then this element is called the least upper bound 

of B15. If a two-element set {a, b} has the least upper bound, then we denote it by 

a ˅ b 

In a set-theoretic POS, the least upper bound of a family of sets is the set-theoretic union of that family. This, 

of course, also concerns a family of two sets. 

2.3 Chain-complete partially-ordered sets 

Let (A, ⊑) be a partially ordered set. By a chain in that set we mean any sequence of elements of A: 

a1, a2, a3, … 

such that ai ⊑ ai+1. If the set of all elements of a chain has the least upper bound, then it is called the limit of 

that chain and is denoted by: 

lim(ai | i = 1,2,…) 

A POS is said to be chain-complete partially ordered set (abbr. CPO) if: 

1. every chain in A has a limit, 

2. there exists the least element in A. 

This least element we shall denote by Φ.  

A total function f : A ⟼ A is said to be monotone if a ⊑ b implies f.a ⊑ f.b and we say that it is continuous 

if the following two conditions are satisfied: 

1. for any chain (ai | i = 1,2,…) the sequence (f.ai | i = 1,2,…) is also a chain, 

2. if the former has a limit, then the latter has a limit as well and 

 lim(f.ai | i = 1,2,…) = f.[lim(ai | i = 1,2,…)]. 

As is easy to see, every continuous function is monotone, which follows from the fact that 

if a ⊑ b then lim(a, b, b, b, …) = b.  

Continuous functions satisfy a theorem — due to S.C. Kleene [57] — which we shall frequently use in our 

applications. 

Theorem 2.3-1 If f is continuous in a chain complete set, then the set of all solutions of the equation 

x = f.x                                (2.3-1) 

is not empty and contains the least element defined by the equation  

Y.f = lim(fn.Φ | n = 0,1,2,…) ■ 

Proof of that theorem is very simple: 

f.(Y.f) = f.(lim(fn.Φ | n = 0,1,2,…)) = lim(fn.Φ | n = 1,2,…) = lim(fn.Φ | n = 0,1,2,…). 

The last equality follows from the fact that f0.Φ = Φ, hence adding f0.Φ to the chain, does not change its limit. 

■ 

The equation (2.3-1) is called a fixed point equation and its solution Y.t — the least fixed point of function 

f. It is the least solution of the equation (2.3-1), but in the sequel I will call it simply the solution since other 

solutions will not be concerned.  

 
15 The greatest lower bound is defined in an analogous way but that concept will not be used in the book.  
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The concept of a one-argument continuous function may be simply generalised to functions of many argu-

ments. We say that 

f : Acn ⟼ A                                    (2.3-2) 

is continuous wrt16 to its first element, if for any tuple (a1,…,an-1) the function 

g.a = f.(a, a1,…,an-1)  

is continuous. In an analogous way we define the continuity of f with regard to any other of its arguments.  

A many-argument function (2.3-2) is called continuous if it is continuous in all of its arguments.  

As we are going to see soon, continuous functions are fundamental for our applications since due to 

Kleene’s theorem we can recursively define sets and functions. Such definitions will most frequently have the 

form 

x1 = f1.(x1,…,xn) 
… 
xn = fn.(x1,…, xn) 

Of course, every such set of equations may be regarded as one equation 

X = f.X 

in a POS over a Cartesian product A1 x … x An where 

f.(x1,…,xn) = (f1.(x1,…,xn),…, fn.(x1,…,xn)) 

and where the order is define component-wise, i.e. 

(a1,…,an) ⊑n (b1,…,bn) iff ai ⊑ bi for i = 1,…,n. 

As is easy to show, if all Ai are chain-complete, then their Cartesian product is chain-complete wrt the above 

order. Besides, if each fi is continuous, then f is continuous, as well.  

As turns out, fixed-point sets of equations with continuous functions may be transformed (and reduced) in 

a way analogous to the case of algebraic equations. It is expressed by two theorems due to Hans Bekić [11] 

and Jacek Leszczyłowski [60]. 

 

Theorem 2.3-2 If  f, g : A x A ⟼ A are continuous, then the set of equations 

a = f.(a, b) 

b = g.(a, b) 

is equivalent to 

a = f.(a ,b) 

b = g.( f.(a, b), b)  ■ 

 

Theorem 2.3-3 If  f, g : A x A ⟼ A are continuous, then the set of equations 

a = f.(a ,b) 

b = g.(a, b) 

is equivalent to 

a = h.b 

b = g.(a, b) 

 
16 This abbreviation means “with respect to”.  
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where h is a function that to every b assigns the least fixed point of  f.(x, b) regarded as a one-argument 

function of x running over the set A. ■ 

As we are going to see, the theory of fixed-point equations in CPO is an important tool for writing recursive 

definitions of sets and of functions in denotational models. More investigations about continuous functions 

may be found in [24]. 

2.4 A CPO of formal languages 

Grammars of natural languages such as English, Polish, French, etc. may be regarded as algorithms allowing 

to check which sentences are grammatically correct and which are not. In this spirit, Noam Chomsky has 

developed in early 1960. his model of generative context-free grammars or simply context-free grammars 

(see [37], [39], [40], [41]). Formal languages generable by such grammars have been called context-free lan-

guages.  

Although this model turned out to be too simple for natural languages, it was successfully applied for 

programming languages. In the early years for Algol 60 and Pascal, later for ADA and CHILL and many 

others. This contributed to the rapid development of their theory. The first internationally recognized monogra-

phy on that subject was written in 1966 by Seymour Ginsburg [49], and the first Polish monography in 1971 

by myself [16]. A year later, I have published a paper on equational grammars [18], which are equivalent, in 

a sense, to context-free grammars.  

This section contains a short introduction to context-free languages in the context of equational grammars.  

Let A be an arbitrary finite set of symbols called an alphabet. By a word over A, we mean every finite 

string over A, including the empty string. Traditionally words are written as sequences of characters, e.g., 

accbda, and the empty word is denoted by ε.  

If x and y are words, then by their language-theoretic concatenations or just a concatenation ― which we 

denote by x © y or simply by xy ― we mean a sequential combination of these words. E.g. 

abdaa © eaag = abdaaeaag 

The function © is called concatenation, as well.  

Note the difference between the Cartesian concatenation of tuples ₵ introduced in Sec. 2.1.4, and our con-

catenation of words. For instance 

abdaa ₵ eaag = (abdaa, eaag) 

where abdaa and eaag are regarded as one-element tuples. Note also that 

tup-1 ₵ tup-2 

makes sense for tuples of arbitrary elements, e.g., of functions, whereas © is applicable only to words which 

are strings of characters.  

Every set L of words over A is called a formal language (or simply a language) over A. By Lan(A) we 

denote the family of all languages over A and Ø — the empty language (empty set). If P and Q are languages, 

then their concatenation is the language defined by the equation:  

P © Q = {p © q | p:P and q:Q}. 

As we see by © we denote not only a function on words but also on languages. If it does not lead to ambiguities, 

P © Q is written as PQ. Since concatenation is an associative operation, we can write PQL instead of (PQ)L 

or P(QL). I shall also assume that concatenation binds stronger than set-theoretic union, hence instead of  

(P © Q) | (R © S)  

I shall write 

PQ | RS 

It is also easy to see that concatenation is distributive over the union, i.e. 
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(P | Q) R = PR | QR. 

The n-th power of a language P is defined recursively: 

P0 = { ε } 

Pn = P © Pn-1 for n > 0 

We shall also use two operators called respectively plus and star: 

P+ = U.{Pi | i > 0} 

P* = P+ | P0 

Hence for an alphabet A, the set A+ is the set of all non-empty words over A, and A* is the set of all words 

over A. Languages over A are subsets of A*.  

The inclusion of sets is, of course, a partial order in Lan(A) and (Lan(A), ⊆) is a CPO with empty language 

as the least element. As is easy to show, all operations on languages, which are defined above, plus the union 

of languages, are continuous. For any two languages, P and Q, their least upper bound is their union P | Q, 
and the limit of a chain of languages is the union of all elements of the chain.  

It should be emphasized that the Cartesian power of sets introduced in Sec. 2.1.2 is different from the power 

of languages. Notice that if P and Q are languages, then: 

P © Q = { p © q | p : P and q : Q} 

P x Q = { (p, q) | p : P and q : Q} 

The concatenation of languages is hence still a language, whereas the Cartesian product is not.  

2.5 Equational grammars 

Since all the operations on languages defined in Sec. 2.4 are continuous, they can be used in fixed-point 

equations (Sec. 2.3) regarded as grammars. This idea is elaborated below. 

Consider a simple example of a set of equations that defines the set of identifiers of a programming lan-

guage. We assume that identifiers always start from a letter: 

Letter   = {a, b, …, z} 
Digit    = {0, 1, …, 9} 
Character = Letter | Digit 
Suffix   = {ε} | Character © Suffix 
Identifier = Letter © Suffix 

Such sets of equations are called equational grammars, and their solutions (tuples of languages) are called 

many-sorted languages. In the above case, the defined many-sorted language is a tuple of five categories 

(sorts): 

(Letter, Digit, Character, Suffix, Identifier). 

The category Suffix has an auxiliary character since its only role is to express the fact that an identifier must 

start with a letter. Its equation can be eliminated in using the Theorem 2.3-2 and the Theorem 2.3-3. As is easy 

to prove 

Suffix = Character* 

hence our grammar may be reduced to a more compact form 

Letter   = {a, b, …, z} 
Digit    = {0, 1, …, 9} 
Identifier = Letter © (Letter | Digit)* 

This grammar defines a many-sorted language, which consists of three categories — and therefore is different 

from the former — but defines the same set Identifier.  
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Let us now investigate equational grammars more formally (for details see [18]). Let A be an arbitrary non-

empty finite alphabet and let 

Fam ⊆ Lan(A) 

be an arbitrary family of languages over A. Let Pol(Fam) denotes the least class of functions of the type: 

p : Lan(A)cn ⟼ Lan(A)  where n ≥ 0 

which contains: 

(1) all projections, i.e. functions of the form f.(X1,…,Xn) = Xi for i ≤ n, 

(2) all functions with constant values in Fam, 

(3) the union and concatenation of languages 

and is closed over the composition (superposition) of functions.  

Functions in Pol(Fam) are called polynomials over Fam. Since all functions described in (1), (2) and (3) 

are continuous and composition preserves continuity, all polynomials are continuous. 

By an atomic language over A we shall mean any one-element language {w}, where w : A*. Polynomials 

over an arbitrary set of atomic languages are called Chomsky’s polynomials17. Below a few examples of such 

polynomials: 

p1.(X,Y,Z) = {b} 
p2.(X,Y)    = {b} 
p3.(X,Y,Z) = X  
p4.(X,Y,Z) = ({d}X{b}YY{c} | X) Z 

Observe that for a complete identification of a polynomial we have to define its arity. This can be seen on the 

example of p1 and p2.  

Polynomials which do not “contain” union — e.g., such as p1, p2, and p3 — are called monomials. Since 

concatenation is distributive over the union, every polynomial may be reduced to a union of monomials.  

An equational grammar over an alphabet A is any fixed-point set of equations of the form: 

X1 = p1.(X1,…,Xn) 
…    
Xn = pn.(X1,…,Xn) 

where all pi are Chomsky’s polynomials over A. Since polynomials are continuous, this set of equations has a 

unique least solution (L1,…,Ln). The languages L1,…Ln are said to be defined by our grammar. We also say 

that they are equationally definable.  

As has been proved in [18], the class of equationally-definable languages is identical with the class of 

context-free languages in the sense of Chomsky18. Such a class remains the same if we allow the operations 

“*” and “+” in polynomials and if polynomials are built over arbitrary equationally-definable languages. For 

proofs of all these facts, see [18].  

Due to these facts in the sequel of the book, equationally-definable languages will be called context-free. 

 
17 Noam Chomsky — an American linguist, philosopher and political activist. Professor of linguistics at Massachusetts 

Institute of Technology, co-creator of the concept of transformational-generative grammars. Chomsky did not intro-
duces the idea of Chomsky’s polynomials but his grammars are very close to them.  

18 Which means that for each equational grammar there exists an equivalent context-free grammar and vice versa.  
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2.6 A CPO of binary relations 

Let A and B be arbitrary sets. Any subset of their Cartesian product A x B will be called a binary relation or 

just a relation between these sets. Hence 

Rel(A,B) = {R | R ⊆ A x B} 

is the set of all binary relations between A and B. Instead of writing (a,b) : R, I shall usually write a R b.  

If A = B, then instead of  Rel(A, A) we write Rel(A). For every A we define an identity relation: 

[A] = {(a, a) | a:A} 

By Ø, we shall denote the empty relation19. Let now 

Boolean = {tt, ff}     — logical values 

p : A  → Boolean     — a predicate 

With every predicate, we assign an identity relation defined by 

Id(p) = [{a | p.a = tt}] 

If R : Rel(A,B), then 

dom.R = {a | (Ǝb:B) a R b}  ― the domain of R 

cod.R  = {b | (Ǝa:A) a R b}  ― the codomain of R 

Let P : Rel(A,B) and R : Rel(B,C). Sequential composition of P and R we call a relation  

P ● R : Rel(A,C)  

defined as follows:  

P ● R = {(a, c) | (Ǝb:B) (a P b & b R c)} 

For every two relations, their composition always exists, although it may be an empty relation. As is easy to 

check ● is associative i.e. 

(P ● R) ● Q = P ● (R ● Q) 

It is, therefore, legal to write P ● R ● Q. We shall also write PR instead of P ● R whenever this does not 

lead to misunderstanding, and we shall assume that composition binds stronger than union, hence instead of 

(P ● R) | (Q ● S) 

we write 

PR | QS. 

In the sequel of the book, the sequential composition of relations will be most frequently applied in the par-

ticular case where the composed relations are function. In that case: 

(P ● R).a = R.(P.a) 

and therefore 

(P ● R ● Q).a = (P ● (R ● Q)).a = Q.(R.(P.a))) 

which means that in a sequential composition of functions, the composed functions are “executed” from left 

to right one after another. 

Similarly as for languages also for relations, the operations of iterations, i.e. of power and star are defined. 

In this case: 

R0 = [A]  ― identity relation in over A 

 
19 The same symbol was used for an empty set which is not an inconsistency since each relation is a set. 
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Rn = RRn-1 for n > 0 

R+ = U {Rn | n > 0}  

R* = R+ | R0 

The converse relation for R is defined as follows 

 a R-1 b   iff   b R a 

A relation R is called a function, if ⊇ 

for any a, b and c, if a R b and a R c, ten  b = c. 

If R and R-1 are functions, then R is said to be a convertible function or a one-one function. If P and R are 

functions, then PR is also a function and 

(PR).a = P.(R.a) 

hence the composition of functions is their superposition. 

The set of relations Rel(A,B) constitutes a CPO with ordering by set-theoretic inclusion and the empty 

relation as the least element. All of the defined operations on relations are continuous. The future we shall 

frequently refer to the following theorem: 

 

Theorem 2.6-1 For any P, Q : Rel(A) the least solutions of equations 

X = P | QX and 

X = P | XQ 

are respectively 

X = Q*P  and 

X = P*Q 

Moreover, if both P and R are functions with disjoint domains, then both these solutions are also functions. 

  ■ 

In this place, it is worth noticing that the set of partial functions 

A → B 

constitutes a chain-complete subset of (Rel(A,B), ⊆) that is closed under the composition of arbitrary func-

tions and union of functions with disjoint domains. Of course, both these operations are continuous.  

Due to these facts, functions can be defined by fixed-point (recursive) equations. Since A and B are arbi-

trary, this is also true for functions of type 

f : A1 → A2 → … → An 

provided that appropriate constructors are defined. As a first example, consider a recursive definition of a 

function of an n-th power of number 2, i.e.20. 

power-of-two : Number → Number  where Number = {0, 1, 2,…} 

power-of-two.n = 2n        for an integer n ≥ 0 

A recursive definition of that function is as follows: 

power-of-two.n =  
 n = 0  ➔ 1 

 
20 Here I introduce a notational convention of VDM and MetaSoft where instead of using one-character symbols as in 

usual mathematics, I use many-character symbols for both sets and functions. As we are going to see later, this 
convention is practically a must in the case of denotational models where numbers of symbols goes into tenses if not 
hundreds.  
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 n > 0  ➔ power-of-two.(n-1) * 2 

This definition written as a fixed-point equation in the set-theoretic CPO  

(Number → Number, ⊆, [ ]) 

is as follows 

power-of-two = zero ⧫ (minus ● power-of-two) ● double   

where 

zero.n  = [0/1] 
minus.n  = n-1  for n > 0 
minus.0  = ? 
double.n = 2 * n 

Notice that all these functions are constants in our equation, hence the right-hand side of that equation repre-

sents a one-argument function in our CPO: 

F.fun = zero ⧫ (minus ● fun) ● double 

Since, as is easy to prove, ⧫ and ● are continuous on both arguments, our function F is continuous as well, 

and therefore ― according to Kleene’s theorem ― the least solution of our equation is the limit (the union) 

of the following chain of functions: 

F.{ }    = zero            = [0/1] 
F.zero   = zero ⧫ (minus ● zero) ● double  = [0/1, 1/2]  
F.(F.zero)  = zero ⧫ (minus ● F.zero) ● double = [0/1, 1/2, 2/4]  
… 

Each element of that chain is a finite approximation of our function power-of-two.  

Now let us consider a technically more complicated example of a two-argument function of power in the 

set of natural numbers: 

power : Number x Number → Number 

power.n.m =  
m = 0 ➔ 1 
m > 0 ➔ n ٭ power.n.(m-1)) 

This definition can be expressed as a fixed-point equation in the CPO of binary relations: 

Rel.(Number x Number, Number) 

To see that, let us construct a fixed-point equation whose solution is the function: 

power.(n, m) = nm 

regarded as a relation in our CPO. Let us start from the definitions of a certain operation of composition of 

functions 

F, Q : Rel.(A x A, A)                             (2.6-1) 

By the composition of  F and Q on the second argument, we shall mean the relation 

F  Q = {((a, b), c) | (∃d) ((a, b), d) : F and ((a, d), c) : Q} 

If F and Q are functions then 

[F  Q].(a, b) = Q.(a, F.(a, b)) 

The set of relations (2.6-1) is, of course, a CPO with set-theoretic inclusion. One can show that  is contin-

uous on both arguments. Since the limit of a chain is in our case the set-theoretic union, it is sufficient to show 

that  is distributive over union on both arguments, which means that the following equalities hold (we as-

sume that  binds stronger than the union): 
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(F1 | F2)  Q = F1  Q | F2  Q  and 

F  (Q1 | Q2) = F  Q1 | F  Q2 

Let then 

 ((a, b), c) : (F1 | F2)  Q 

which means that there exists a d such that 

((a, b), d) : (F1 | F2)  and ((a, d), c) : Q 

which means that there exist i and d such that 

((a, b), d) : Fi and ((a, d), c) : Q 

which means that there exists i such that 

((a, b), c) : Fi  Q 

which means that 

((a, b), c) : F1  Q | F2  Q 

In this way, we have proved the inclusion  

(F1 | F2)  Q ⊆ F  Q1 | F  Q2  

The proofs of the remaining three inclusions are analogous.  

Since  is continuous on both arguments the following fixed-point equation has the least solution: 

power = zero | (minus  power)  times                   (2.6-2) 

where: 

zero(n, 0)   = 1 
minus.(n, m) = m-1  for m > 0, and for m = 0 this function is undefined 
times.(n, m) = n٭m 

Since the set-theoretic union and our composition are both continuous in the CPO of relations (2.6-1), 
Kleene’s theorem implies that the solution of (2.6-2) is the limit of the chain of relation 

 P0 ⊆ P1 ⊆ P2 ⊆ …                             (2.6-3) 

which are functions defined in the following way: 

P0  = zero  
Pi+1 = (minus  Pi)  times  for i ≥ 0 

This means that for every i ≥ 0 function Pi is a partial function of power restricted to m ≤ i: 

Pi.(n, m) = 
 m ≤ i ➔ mi 

 true  ➔ ? 

Since all these functions coincide on the common parts of their domains, the set-theoretic union of the chain 

(2.6-3) is a function, and it is the power function defined for arbitrary n, m ≥ 0. 

2.7 A CPO of denotational domains 

One of the main tools of denotational models of software systems are sets traditionally referred to as domains. 

These domains are most frequently defined using equations — possibly fixed-point equations — based on 

functions that are listed below. Some of them have been already defined, but I recall their descriptions just to 

have a full list in one place: 

1)  A | B   ― set-theoretic union 
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2)  A ∩ B   ― set-theoretic intersection 

3)  A x B   ― Cartesian product 

4)  Acn    ― Cartesian n-th power 

5)  Ac+    ― Cartesian +-iteration  

6)  Ac*    ― Cartesian *-iteration 

7)  FinSub.A ― the set of all finite subsets 

8)  A ⟹ B  ― the set of all mappings including the empty mapping 

9)  A – B   ― set-theoretic difference 

10)  Sub.A  ― the set of all subsets 

11)  A → B  ― the set of all functions from A to B 

12)  A ⟼ B  ― the set of all total functions from A to B 

13)  Rel.(A,B) ― the set of all relations from A to B 

These operators may be used in “direct” equations, e.g. 

State   = Identifier ⟹ Data 
Instruction = State → State                       (2.7-1) 

or in fixed point equations, e.g.: 

Record = Identifier ⟹ Data 
Data  = Number | Record                         (2.7-2) 

Whereas definition (2.7-1) does not raises any doubts, in the case of (2.7-2) the situation is different. Since 

this is obviously a fixed-point equation we have to prove the continuity of ⟹ and |, but the continuity where? 

What is the CPO of domains? Set-theoretic inclusion is clearly it’s partial order, but what is the carrier?  

Potentially that carrier should include all domains that we shall define in the future, hence something like 

the set of all sets. Unfortunately — as it has been known since 1930-ties — such a set does not exist21. Despite 

this fact, our problem can be solved on the base of M.P. Cohn’s [42] construction. As he has shown, for any 

collection of sets B (a collection does not need to be a set!) there exists a set of sets Set.B with the following 

properties: 

1. all sets in B belong (as elements) to Set.B, 

2. Set.B is closed under all our operations from 1) to 13), 

3. Set.B is closed under unions of all denumerable families of its elements, 

4. the empty set Ø belongs to Set.B. 

Following this construction, we choose as family B, the set of all initial domains that we shall use in our 

model, such as Boolean, Number, Identifier, Character, etc. Since (Set.B, ⊆) is a set-theoretic CPO, we 

can talk about the continuity of functions defined on sets in Set.B. As is easy to show operations from 1) to 

8) are continuous, the difference of sets is continuous only on the left argument, and the remaining functions 

are not continuous, and therefore they cannot appear in fixed-point equations22.  

 
21 Formally speaking the attempt of constructing such a set leads to a contradiction. Indeed, let Z be the set of all sets. 

Let then Ze be the set of all sets that are their own elements and Zn — the set of all sets that are not their own 
elements. Since obviously Z = Ze | Zn, set Zn must belong to either Ze or Zn. The first case must be excluded since 
in that case Zn should belong to Zn. The second case is impossible either, since then Zn must not belong to itself. 
Intuitively speaking one can say that the collection of all sets is “to large to be a set”.  

22 As an example let me show that the operator → is not continuous. Let then A1 ⊂ A2 ⊂ …be an arbitrary chain of 
mutually different sets, and let B be an arbitrary set. The sequence of domains Ai → B constitutes a chain but none of 
its elements contain a total function on the union UAi, hence none of such functions belong to U(Ai → B), which means 
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As we see, therefore, the equation (2.7-2) has a solution (the least solution) defined by the theorem of 

Kleene (Sec.2.3). Records defined in that way may “carry” other records, but of a “lower-level” than them-

selves. At the end of that hierarchy, we have records carrying numbers. If however, we replace ⟹ by →, then 

(2.7-2) would have no solution. A problem of precisely that type encountered mathematicians who, in the 

early 1970-ties, had been trying to define denotational semantics for Algol 60. More on that subject in Sec. 

3.1.  

As can be easily proved, among our functions on domains 1) – 8) are continuous on both arguments, 9) is 

continuous on the first argument only, and 10) – 13) are not continuous in both arguments.  

The fact that non-continuous operators cannot be used in fixed-point domain equations does not mean 

however that they cannot be used in fixed-point equations “at all”. For instance, our two sets of equations 

(2.7-1) and (2.7-2) can be legally combined into one: 

Data   = Number   |    Record                      (2.7-3) 
Record  = Identifier  ⟹ Data 
State   = Identifier  ⟹ Data 
Instruction = State   → State  

Although “as a whole” this is a fixed-point set of equations with one non-continuous operation, the recursion 

is present in only in the second and the third equation where the operators are continuous. This set of equations 

is therefore legal. 

2.8 Abstract errors 

For practically all expressions appearing in programs, their values in some circumstances cannot be computed 

“successfully”. Here are a few examples23: 

• expression x/y cannot be evaluated if the variables x or y have not been declared as numbers, 

• expression x/y cannot be evaluated if the current value of y is zero, 

• expression x+y cannot be evaluated if its value exceeds the maximal number allowed in current imple-

mentation, 

• the value of the array expression a[k] cannot be computed if the variable a has not been declared as 

an array or if k is out of the domain of a, 

• the query “Has John Smith retired?” cannot be answered if John Smith is not listed in the database. 

In all these cases, a well-designed implementation should stop the execution of a program and generate an 

error message.  

To describe that mechanism formally, we introduce the concept of an abstract error. In a general case, 

abstract errors may be anything, but in our models, they are going to be words, such as, e.g. ‘division-by-
zero’. They are closed in apostrophes to distinguish them from metavariables at the level of MetaSoft. 

The fact that an attempt to evaluate the expression x/0 raises an error message can be now expressed by 

the equation: 

x/0 = ‘division-by-zero’ 

In the general case with every domain Data, we associate a corresponding domain with abstract errors 

DataE = Data | Error 

 
that U(Ai → B) ≠ UAi → B. In an analogous way we may show the non-continuity of the operators A ⟼ B and Rel.(A,B). 
Notice, however, that U(Ai ⟹ B) = UAi ⟹ B, and similarly for the right-hand-side argument which means that ⟹ is 
continuous on both arguments. 

23 Here I anticipate the future rule of typesetting syntactic elements in Courier New (see Sec. 2.12)  
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where Error is a universal set of all abstract errors that may be generated during the execution of our programs. 

This set will be regarded as a parameter of a programming language. Now, every partial operation  

op : Data1 x … Datan → Data, 

whose partiality is computable,24 is extended to a total operation 

ope : DataE1 x … DataEn ⟼  DataE 

Of course ope should coincide with op wherever op is defined, i.e. if d1,…,dn are not errors and op.(d1,…,dn) 
is defined, then ope.(d1,…,dn) = op.(d1,…,dn).  

An operation ope will be said to be transparent for errors or simply transparent if the following condition 

is satisfied: 

if dk is the first error in the sequence d1,…,dn, then ope.(d1,…,dn) = dk 

This condition means that arguments of ope are evaluated one-by-one from left to right, and the first error (if 

it appears) becomes the final value of the computation. 

The majority of operations on data that will appear in our models will be transparent. An exception are 

boolean operations discussed in Sec. 2.9. 

Error-handling mechanisms are frequently implemented in such a way that errors serve only to inform the 

user that (and why) program evaluation has been aborted. Such a mechanism will be called reactive. In some 

applications, however, the generation of an error results in an action, e.g., of recovering the last state of a 

database (Sec. 10.9.6.4). Such mechanisms will be called proactive.  

As we shall see in the sequel of the book, a reactive mechanism may be quite simply enriched to a proactive 

one. Since, however, the latter is technically more complicated, in the development of our example-language 

Lingua, except Lingua-SQL, we shall most frequently apply a reactive model. Proactive constructions are 

discussed in Sec. 5.1.5.5 and Sec. 10.9.6.4.  

A well-defined error-handling mechanism allows avoiding situations where programs hang up without any 

explanation, or even worse — when they generate an incorrect result without warning the user (see Sec. 

10.9.6.4).  

2.9 A three-valued propositional calculus 

Tertium non datur — used to say ancients masters. Computers denied this principle. 

In the Aristotelean logic, every sentence is either true or false. The third possibility does not exist. In the 

world of computers, however, the third possibility is not only possible but just inevitable. In evaluating a 

boolean expression such as, e.g., x/y>2 an error (see Sec. 2.8) may appear.  

To describe the error-handling mechanism of boolean expressions the basic domain of two boolean values 

“true” and “false”: 

Boolean = {tt, ff} 

must be enriched by a third element 

BooleanE = {tt, ff, ee} 

where ee stands for “error” , but in this case represents either an error or an infinite computation (a looping). 

We assume for simplicity that there is only one error. This assumption does not affect the generality of our 

 
24 Partiality of a function f is computable, if there is an algorithm which for every element x can detect if f.x is defined or 

not. In the examples of this section all functions have computable partialities. It is a well-known fact, however, that in 
the general case the definedness of recursive functions is not computable. E.g. there is no algorithm which given a 
program will check whether the execution of this program will terminate. Therefore, we cannot assume that any unde-
finedness will be signalized by an error message.  
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model since, as we are going to see later, at the level of boolean expressions, all errors will be treated in the 

same way.    

Now, notice that the transparency of boolean operators would not be an adequate choice. To see that con-

sider a conditional instruction: 

if x ≠ 0 and 1/x < 10 then x := x+1 else x := x–1 fi 

We would probably expect that for x=025, one should execute the assignment x:=x-1. If however, our con-

junction would be transparent, then the expression  

x ≠ 0 and 1/x < 10  

would evaluate to ‘division-by-zero’, which means that our program would abort. Notice also that the trans-

parency of and would imply 

ff and ee = ee 

which would mean that when an interpreter evaluates p and q, then it first evaluates both p and q ― as in 

“usual mathematics” ― and only later applies and to them. Such a mode is called an eager evaluation.  

An alternative to it is a lazy evaluation where, if p = ff, then the evaluation of q is abandoned, and the final 

value of the expression is ff. In such a case: 

ff and ee = ff 

tt or ee  = tt 

A three-valued propositional calculus with lazy evaluation was described in 1961 by John McCarthy [65], 

who defined boolean operators as in Tab. 2.9-1. 

 

or-m tt ff ee 

tt tt tt tt 

ff tt ff ee 

ee ee ee ee 
 

 

and-m tt ff ee 

tt tt ff ee 

ff ff ff ff 

ee ee ee ee 
 

 

not-m  

tt ff 

ff tt 

ee ee 
 

Tab. 2.9-1 Propositional operators of John McCarthy 

To see the intuition behind McCarthy’s operators consider the expression p or-m q assuming that its argu-

ments are computed from left to right26: 

• If p = tt, then we give up the evaluation of q (lazy evaluation) and assume that the value of the 

expression is tt. Notice that in this case, we maybe avoid an error message generated by q or entering 

an infinite computation.  

• If p = ff, then we evaluate q, and its value becomes the value of the expression. 

• If p = ee, then this means that the evaluation aborts at the evaluation of p, hence q will not be evaluated. 

As a consequence, the final value of our expression must be ee. 

The rule for and is analogous. Notice that McCarthy’s operators coincide with classical operators on classical 

values (grey fields in the table). McCarthy’s implication is defined classically: 

p implies-m q = (not-m p) or-m q 

 
25 Whereas x (in Courier) denotes a variable x (in Arial) denotes its value.  
26 The suffix “-m” stands for “McCarthy” and is used to distinguish McCarthy’s operators not only from classical ones but 

also from the operators of Kleene, which are discussed later.  
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As we are going to see, not all classical tautologies remain satisfied in McCarthy’s calculus. Among those that 

are satisfied we have27: 

• associativity of alternative and conjunction, 

• De Morgan’s laws 

and among the non-satisfied are: 

• or-m and and-m are not commutative, e.g., ff and-m ee = ff but ee and-m ff = ee, 

• and-m is distributive over or-m only on the right-hand side, i.e. 

p and-m (q or-m s)  =  (p and-m q) or-m (p and-m s) however 

(q or-m s) and-m p  ≠  (q and-m p) or-m (s and-m p) since 

(tt or-m ee) and-m ff = ff  and  (tt and-m ff) or-m (ee and-m ff) = ee 

• analogously or-m is distributive over and-m only on the right-hand side, 

• p or-m (not-m p) does not need to be true but is never false, 

• p and-m (not-m p) does not need to be false but is never true. 

On the ground of that calculus, we build in Sec. 7 a calculus of three-valued partial predicates28, which are 

later used in program construction rules.  

An alternative to McCarthy’s propositional calculus is that of Kleene with operators defined in the follow-

ing way:  

 

or-k tt ff ee 

tt tt tt tt 

ff tt ff ee 

ee tt ee ee 
 

 

and-k tt ff ee 

tt tt ff ee 

ff ff ff ff 

ee ee ff ee 
 

 

not-k  

tt ff 

ff tt 

ee ee 
 

Tab. 2.9-2 Propositional operators of Steven Kleene 

In that case  

tt or-k ee  = ee or-k tt  = tt 

ff and-k ee = ee and-k ff  = ff 

This calculus can be said even “more lazy” that that of McCarthy, since now whenever any argument of or-k 
is tt, then the result is tt, and analogously for and-k. Due to this assumption, we gain commutativity of both 

operators, but at the implementations level we have to compute both arguments of our operators “in parallel”. 

This is the consequence of the fact that ee may correspond to an infinite execution and therefore McCarthy’s 

left-to-right execution of ee or-k tt would not let us “learn” that the second argument is tt.  

Although Kleene’s calculus is not implementable in a sequential mode, it may be quite useful in describing 

the properties of data, for instance at the level of integrity constraints in SQL (Sec. 10) or when talking about 

program correctness (Sec. 8).  

 
27 It is true only in the case where we have one error element.  
28 The partiality of predicates is due to the use of functional-procedure calls in expressions. 
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2.10 Data algebras 

Data types that are used in programs are usually described by sets of objects — such as numbers, booleans, 

strings, arrays, lists, etc. — and some operations on these objects. For instance, a data type of numbers may 

be described as a tuple29: 

AlgNum = (Number, make.no.1, plus, minus, times, divide)                  (2.10-1) 

This tuple will be called the algebra of numbers where Number — called the carrier of the algebra — is the 

set of all real numbers and make.no.1, plus, minus, times, divide are functions on numbers called construc-

tors. The following formulas define the domains and the codomains of constructors: 

make-no.1 :        ⟼ Number 

plus    : Number x Number  ⟼ Number 
minus   : Number x Number  ⟼ Number                          (2.10-2) 

times   : Number x Number  ⟼ Number 
divide   : Number x Number  →  Number 

The zero-argument function make-no.1 (make number one) represents a constant of our algebra. This func-

tion has no arguments, and its unique value is 1, hence: 

make-no.1.() = 1  

If our algebra were part of a model of a programming language, the presence of this constant would mean that 

number 1 may be expressed directly at the level of syntax by writing make-no.1. Notice that the number 2 

cannot be expressed in this way. Instead, we have to write e.g. 

plus.(make-no.1.(), make-no.1.()) 

Number 2 is thus created from two ones, whereas number 1 — from “nothing”. Both 

make-no.1 .() 

and  

plus.(make-no.1.(), make-no.1.()) 

are examples of expressions written in so-called abstract syntax (see Sec. 2.12). Since such a syntax is not 

very user-friendly, it is in general modified to concrete syntax (see Sec. 3.5), where we would write respec-

tively 1 and 1+1.  

Notice that divide is a partial function since dividing by zero is not possible. 

Our algebra of numbers is an example of abstract algebra, and the list of formulas (2.10-2) is called their 

signature (formal definitions in Sec.2.11). The word “abstract” expresses the fact that our algebra of numbers 

is not a branch of mathematics dedicated to solving algebraic equations, but an abstract mathematical object.  

Of course, in programming languages that operate on numbers, we restrict the set of available numbers — 

i.e., the carrier of the algebra — to a finite set of decimal numbers representable in the arithmetic of our 

computer30. If by NumberR we denote the set of such numbers, then the signature of our algebra may be the 

following: 

make-no.num :         ⟼ NumberR    for num : NumberR 
plus     : NumberR x NumberR → NumberR 
minus    : NumberR x NumberR → NumberR 
minus    : NumberR x NumberR → NumberR 
divide    : NumberR x NumberR → NumberR 

 
29 Names of algebras will be underlined. 
30 Notice that in user manuals the range of numbers is usually defined as an interval, e.g. from -263 to 263 – 1 (see [46]) 

without mentioning that numbers with infinite or with too long binary representations will be truncated.  
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In this algebra we assume to have a finite family of zero-argument constructors indexed by representable 

numbers: 

{make-no.num | num : NumberR} 

Here make-no is a meta-constructor that is not a constructor of our algebra but is used to generate zero-

argument constructors of that algebra.  

Note that in this algebra, all constructors except make-no.num are partial functions since each of them 

may lead out of the domain of representable numbers. However, the use of partial functions as constructors in 

an algebra has two disadvantages: 

• Mathematical disadvantage — in the theory of abstract algebras, all constructors are assumed to be 

total; the introduction of partial constructors is, of course, possible but would complicate the model. 

• Informatical disadvantage — in Lingua, we want to have error-messages that warn the user about each 

situation when an operation can’t be performed. 

To cope with both these problems we introduce abstract errors as described in Sec.2.8 and replace the carrier 

NumberR by the carrier 

NumberE = NumberR | Error 

where the set Error contains all error messages that we shall need in our algebra. Now the signature of our 

algebra is as follows: 

make-no.num :         ⟼ NumberE    for num : NumberR 

plus     : NumberE x NumberE ⟼ NumberE 

minus    : NumberE x NumberE ⟼ NumberE 
times    : NumberE x NumberE ⟼ NumberE 

divide    : NumberE x NumberE ⟼ NumberE 

Passing to another aspect of data-type algebras notice that in the majority of programming languages, with 

data-type number we associate not only arithmetic operations but also predicates such as e.g. less or equal, 
hence functions with numerical arguments and boolean values. To describe such structures we need an algebra 

with two carriers — NumberE and BooleanE — hence  

AlgNumBoo = (NumberE, BooleanE,  

{make-no.num | num : NumberR}, plus, minus, times, divide,  

less, equal, make-bo.tt, make-bo.ff, or, and, not)  

The signature of this algebra in the following: 

make-no.num   :       ⟼ NumberE        for num : NumberR  

plus    : NumberE x NumberE ⟼ NumberE 
minus   : NumberE x NumberE ⟼ NumberE 

times   : NumberE x NumberE ⟼ NumberE 
divide   : NumberE x NumberE ⟼ NumberE 

less    : NumberE x NumberE ⟼ BooleanE                      (2.10-3) 

equal   : NumberE x NumberE ⟼ BooleanE 
make-bo.tt  :         ⟼ BooleanE 

make-bo.ff  :         ⟼ BooleanE 

or     : BooleanE x BooleanE ⟼ BooleanE 
and    : BooleanE x BooleanE ⟼ BooleanE 

not    : BooleanE      ⟼ BooleanE  

An algebra with two carriers is said to be a two-sorted algebra. Sometimes signature of many-sorted algebras 

are visualizes graphically as in Fig. 2.10-1. For simplicity of the figure I included only some operation of the 

algebra and I use concrete-syntax names of operators 1, 0, +, =, etc.  
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Fig. 2.10-1 Graphical representation of a two-sorted algebra 

Of course, all operations of our algebra must not lead out of the set of representable numbers NumberR, 

which should be taken into account in their definitions. For example the operation of addition will be defined 

in the following form: 

plus.(num-1, num-2) = 31 
 num-1 : Error          num-1 
 num-2 : Error          num-2 
 not +.(num-1, num-2) : NumberR  ‘overloading’32 
 true             +.(num-1, num-2) 

where „+” is the arithmetical addition. Notice that plus is not commutative since 

plus.(err-1, err-2) ≠ plus.(err-2, err-1) 

if only err-1 ≠ err-2. 

Note that our arithmetic operations are not associative, either. This is due to the limitation of the size of 

numbers. E.g., if 1000 is the maximal admissible number, then 

(700 + 400) – 200 = ‘overflow’   but 

700 + (400 – 200) = 900 

2.11 Many-sorted algebras 

Our algebra AlgNumBoo is said to be two-sorted since it has two carriers: NumberE and BooleanE. In the 

sequel, we shall construct algebras with more than one carrier called many-sorted algebras or simply algebras. 

Formally a many-sorted algebra is the following tuple: 

Alg = (Sig, Car, Fun, car, fun) 

where 

Sig = (Cn, Fn, ar, so) — is called the signature of the algebra, 

Cn — is a finite set of words called the names of carriers; the 

carriers themselves are called sorts, 

Fn — is a finite set of words called the names of functions; the 

functions themselves are called constructors 

 
31 Here I anticipate a MetaSoft notation, that we are going to use later, where instead of writing num1 we write num-1, 

and similarly for analogous cases.  
32 The negation operator not in this clause is not a constructor of our algebra, but a metaconstructor from the level of 

MetaSoft.  
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ar : Fn ⟼ Cnc* — to every name of a function fn the function ar assigns a 

finite (possibly empty) sequence of sorts’ names 

ar.fn = (cn1,…,cnk) 

called the arity of fn33 

so : Fn ⟼ Cn — to every name of a function fn the function so assigns a 

carrier name so.fn which is called the sort of fn,  

Car — a finite set of carriers, 

Fun — a finite set of total functions with arguments and values 

in carriers; these functions are called constructors, 

car : Cn ⟼ Car — to every name cn of a carrier function car assigns a car-

rier car.cn, 

fun : Fn ⟼ Fun — to every function name fn such that 

   ar.fn = (cn1,…,cnk) 

   so.fn = cn 

the function fun assigns a total function  

   fun.fn : car.cn1 x … x car.cnk ⟼ car.cn 

 

The concepts of arity and sort are applied not only to function names but also to the corresponding functions 

themselves. Functions in the set Fun are traditionally called constructors. The tuple ((cn1,…,cnk), cn) that 

describes the arity and the sort of a constructor will also be called the signature of that constructor.  

Zero-argument constructors, i.e., constructors whose arity is an empty sequence, are called constants of the 

algebra. If f is such a constant, then we write 

f : ⟼ Carrier 

and the unique value of f is written as 

f.() 

It should be emphasized that all constructors of an algebra are total functions. In our case, this is due to the 

use of abstract errors (Sec. 2.8).  

As we are going to see, our formal definition of many-sorted algebras has been introduced to describe the 

derivation of syntax from denotations in the construction of a programming language. For concrete algebras, 

however, e.g., such as discussed in Sec.2.10, the signature is implicit in the set of formulas such as (2.10-3). 
Now consider two algebras: 

Algi = (Sigi, Cari, Funi, cari, funi)  for i = 1,2 

with signatures 

Sigi = (Cni, Fni, ari, soi)   for i = 1,2 

We say that  Sig2 is an extension of Sig1 or that Sig1 is a restriction of Sig2, if 

1. Cn1  ⊆ Cn2 and Fn1  ⊆ Fn2,  

 
33 The word „arity” comes from unary, binary, ternary etc.  
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2. functions ar2, so2 coincide with ar1, so1 on Fn1. 

We say that algebra Alg2 is an extension of algebra Alg1, if  

1. Sig2 is an extension of Sig1, 

2. car1.cn ⊆ car2.cn for every sort cn : Cn1, 

3. fun2.fn coincides with fun1.fn on the appropriate carriers for every fn : Fn1. 

In other words, each (nontrivial) extension of an algebra results from that algebra by adding new carriers 

and/or new constructors and/or new elements to the existing carriers.  

Two many-sorted algebras are said to be similar if they have the same signature. In the future, we shall 

frequently define concrete algebras by defining their carriers and constructors but without showing their 

signatures explicitly. In that case, we shall say that two algebras are similar if it is possible to construct a 

common signature for them. 

If Alg1 and Alg2 are similar, then we say that Alg1 is a subalgebra of Alg2 if: 

1. the carriers of Alg1 are subsets of the corresponding carriers of Alg2, 

2. the constructors of Alg1 coincide with constructors of Alg2 on the carriers of Alg1. 

Therefore every subalgebra of an algebra is a restriction of that algebra but not vice versa. By a many-sorted 

homomorphism from algebra Alg1 into a similar algebra Alg2 where 

Algi = (Sig, Cari, Funi, cari, funi)   for i = 1,2 

we call a family of functions  

H = {h.cn | cn : Cn} 

whose elements — called the components of that homomorphism — map the elements of Alg1 into the ele-

ments of Alg2, hence  

 h.cn : car1.cn ⟼ car2.cn  for all cn : Cn 

and where for every constructor name fn : Cn such that 

ar.fn = (cn1,…,cnn)  where n ≥ 0 

and every tuple of arguments 

(a1,…,an) : car1.cn1 x … x car1.cnn 

the following equality holds 

h.cn.(fun1.fn.(a1,…,an)) = fun2.fn.(h.cn1.a1,…,h.cnn.an)                           (2.11-1) 

In other words a homomorphic image of the value of a function fun1.fn from the first algebra with arguments 

(a1,…,an) equals the value of the corresponding function fun2.fn from the second algebra applied to the tuple 

of homomorphic images of the first tuple i.e. applied to (h.cn1.a1,…,h.cnn.an). Notice that for n = 0 the 

equality (2.11-1) has the form 

h.cn.(fun1.fn.()) = fun2.fn.()  

The fact that H is a homomorphism from Alg1 into Alg2 shall be written as: 

H : Alg1 ⟼ Alg2 

Our definition of homomorphism implies that if some carriers of the algebra Alg1 are empty, then the 

corresponding components of the homomorphism have to be empty as well. An algebra where all carriers are 

empty is called an empty algebra.  

In the general case, homomorphisms do not map algebras onto algebras but into algebras, which means 

that not every element in Alg2 must be an image of an element form Alg1. For instance an identity homomor-

phism from integers to numbers 
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I2N : (Integer, 1, plus, minus) ⟼ (Number, 1, plus, minus) 

is not “onto”, whereas a homomorphism from integers into even integers 

 I2E : (Integer, 1, plus, minus) ⟼ (Even, 1, plus, minus) 

defined by the equality I2E.int = 2*int is “onto”. In the general case a homomorphism H : Alg1 ⟼ Alg2 is 

called: 

• a monomorphism — if all its components are one-to-one functions; e.g., I2N and I2E, 

• an epimorphism  — if all its components are “onto”; e.g., I2E 

• an isomorphism  — if it is both a monomorphism and an epimorphism; e.g., I2E.  

Theorem 2.11-1 For every homomorphism  H : Alg1 ⟼ Alg2, the image of Alg1 in Alg2, i.e., the restriction 

of Alg2 to the images through H of Alg1 with the appropriate truncation of constructors of Alg2 constitutes a 

subalgebra of Alg2. ■ 

Proof  To prove our theorem, we have to show that the images in Alg2 of the carriers of Alg1 are closed under 

the operations of Alg2. Let then (b1,…,bn) from Alg2, be the image of (a1,…,an) in Alg1, i.e. let: 

(b1,…,bn) = (h.cn1.a1,…,h.cnn.an) 

Let furthermore for some function name fn 

fun2.fn.(b1,…,bn) = b 

We have to show that b has a coimage in Alg1. It is indeed the case since on the ground of (2.11-1): 

fun2.fn.(b1,…,bn) = fun2.fn.(h.cn1.a1,…,h.cnn.an) = h.cn.(fun1.fn.(a1,…,an)) 

hence h.cn.(fun1.fn.(a1,…,an)) is the coimage of b in Alg1. ■ 

An algebra, which is the image of a homomorphism, Alg1 ⟼ Alg2 is called the kernel of the homomorphism 

H in Alg2. 

All our investigations about homomorphisms can be generalized to the case where the signatures of two 

algebras 

Sigi = (Cni, Fni, ari, soi)   for i = 1,2 

are not identical but are similar in the sense that there exist two reversible functions of similarity 

Sn : Cn1 ⟼ Cn2 

Sf : Fn1 ⟼ Fn2 

such that if  

Sf.fn1 = fn2 

ar1.fn1 = cn11,…,cn1p 

ar2.fn2 = cn21,…,cn2m 

then 

p = m 

Sn.cn1i = cn2i  for  i = 1;p 

In other words, two signatures are similar if they have the same number of carrier names and function names, 

and the corresponding function names have identical arities and sorts up to the names of carriers. 

Now we can generalize the notion of the similarity of algebras: two algebras shall be called similar if their 

signatures are similar. For any fixed functions, Sn and Sf the concept of homomorphism, and the correspond-

ing theorems remain valid for the generalized similarity.  
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2.12 Abstract syntax and reachable algebras 

Every signature 

Sig = (Cn, Fn, ar, so) 

unambiguously determines a certain algebra with that signature and with formal languages as carriers. This 

algebra is called abstract syntax over signature Sig and will be denoted by AbsSy(Sig)34. The elements of 

its carriers are words of a many-sorted formal language  

{Lan.cn | cn : Cn} 

defined by an equational grammar (see Sec.2.5) in a way described below. 

To every carrier name cn we associate a language denoted by Lan.cn. The tuple of all these languages is 

defined by an equational grammar where for every cn : Cn we have the following equation35: 

Lan.cn = {fn1} © {(} © Lan.cn11 © {,} © … © {,} © Lan.cn1n(1) © {)} | 
…                                      (2.12-1) 

  {fnk} © {(} © Lan.cn1 © {,} © … © {,} © Lan.cnn(k) © {)} 

Here fni for i = 1;k are function names with 

so.fni = cn 

and  

ar.fni = (cni1,…,cnin(i))   for  i = 1;k 

We assume that if for a carrier name cn there is no function name fn such that so.nf = cn, then the corre-

sponding language is empty, i.e. its defining equation is: 

Lan.cn = Ø 

For every non-empty Lan.cn, its elements are words of the form 

fni(wi1,…,win(i)) 

i.e. of the form fni © ( © wi1 © … © win(i) ©) where © is the concatenation of words and 

wik : Lan.cnk. 

In this place, it is worth noticing that if there are no zero-argument functions’ names (constants) in the signa-

ture, then all languages (carriers) of the corresponding abstract syntax are empty.  

Since abstract syntaxes are generated from signatures, they may be associated with arbitrary algebras 

(through their signatures). If Alg is an algebra with signature Sig, then AbsSy(Sig) will be called the abstract 

syntax of algebra Alg. For instance, if AlgNumBoo is the two-sorted algebra described in Sec.2.10 than the 

carrier of its abstract syntax are defined by the following equational grammar, where NumExp and BooExp 

are languages of numeric expressions and boolean expressions respectively: 

NumExp = 0 |1 |  

plus(NumExp, NumExp) | minus(NumExp, NumExp) |  

times(NumExp, NumExp) | divide(NumExp, NumExp) 

(2.12-1) 

BooExp = tt | ff |  

 
34 The idea of an abstract syntax regarded as a mathematical idealization of a syntax of a programming language 

appeared for the first time in papers of J. McCarthy [65] and P. Landin [59] but with abstract algebras was for the first 
time associated by J.A. Goguen, J.W. Thacher, E.G. Wagner and J.B. Wright [51]. A little later I used that concept in 
an attempt to give a formal semantics to a subset of Pascal [24]. In this book abstract syntax is understood in a slightly 
different way (technically) but the idea is roughly the same.  

35 We assume, of course, that the commas “,” and the parentheses “(“ and “)” do not appear in the signature as con-
structors’ names.  
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less(NumExp, NumExp) | equal(NumExp, NumExp) | 

or(BooExp, BooExp) | and(BooExp, BooExp) | not(BooExp) 

In this grammar, I use four notational conventions that we shall assume as standards for future use: 

1. words such as 0, 1, plus, (, ) etc. that appear at the level of syntax are typeset with Courier 

New, whereas NumExp and BooExp are typeset in Arial, since they are metavariables from the level 

of MetaSoft, 

2. if it does not lead to a confusion a one-element set {a} is written as a, 

3. for each zero-argument constructor named kn, instead of kn() I write kn, e.g., 1 instead of 1(), 

4. the concatenation sign © is omitted, e.g., I write ab instead of a © b, 

Examples of a numeric and boolean abstract-syntax expression are the following: 

• plus(plus(minus(1,0),1),plus(1,1)) 

• or(less(plus(plus(minus(1,0),1),plus(1,1)),plus(1,1)),ff) 

As we see, the expressions of our languages do not contain variables and are written in a prefix notation where 

function symbols always precede their arguments. E.g., we write plus(1,1) instead of (1 plus 1). The 

latter style is called infix-notation.  

In the syntactic algebra defined by our grammar, the elements of carriers are numeric and boolean expres-

sions, respectively (without variables), and constructors correspond to constructor names from our signature. 

For instance, with a constructor name plus, we associate a constructor [plus] of the algebra AbsSy(Sig) 

defined by the equation 

[plus].[num-exp1, num-exp2] = plus(num-exp1,num-exp2)
36 

This constructor, given two expressions num-exp1 and num-exp2 returns the expression of the form 

plus(num-exp1,num-exp2). E.g. given times(x,y)and plus(z,y)returns  

plus(times(x,y),plus(x,y)) 

Now we can formulate a theorem with fundamental importance for denotational models of programming lan-

guages. 

Theorem 2.12-1 For every many-sorted algebra Alg with a signature Sig there is exactly one homomorphism 

H : AbsSy(Sig) ⟼ Alg. ■ 

Proof Every homomorphism H : AbsSy(Sig) ⟼ Alg must (from the definition) satisfy the equation: 

H.cn.[fn(w1 , … , wn )] = fun.fn.[H.cn1.w1,…,H.cnn.wn] 

where 

ar.fn = (cn1,…,cnn) 

so.fn = cn 

wi : Lan.cni  for  i = 1;n 

Since every word in abstract syntax is of a unique (for it) form fn(w1 , … , wn), the above equations (for all 

fn) define the family {H.cn | cn : Cn} in an unambiguous way. In the case of empty carriers of AbsSy(Sig) 
the corresponding components of H are empty. ■ 

The unique homomorphism from AbsSy(Sig) to Alg will be called the semantics of abstract syntax. For 

instance, if by {N, B} we denote the semantics of abstract syntax of AlgNumBoo, then this homomorphism 

maps boolean expression less(plus(1,1), times(1,1)) into the boolean value ff: 

 
36 The meta-parentheses “[“ and “]” are introduced in order to distinguish them from parentheses that belong to the 

defined language.   
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B.[less(plus(1,1),times(1,1))] =  

fun.less.(N.[plus(1,1)], N.[times(1,1)]) =  

fun.less.(fun.plus.(N.[1],N.[1]), fun.times.([N.[1], N.[1])) = 

fun.less (fun.plus(1,1), fun.times(1,1)) = ff 

On the ground of theorems 2.11-1 and 2.12-1, in every algebra Alg, there is a unique subalgebra which is the 

kernel of the semantics of abstract syntax of Alg. That algebra is called the reachable subalgebra of Alg. This 

name expresses the fact that every element of that algebra can be constructed (reached) by using the construc-

tors of the algebra. For instance, the reachable subalgebra of the algebra  

(Number, 1, plus, divide) 

is the algebra of positive rational numbers 

(PosRat, 1, plus, divide) 

since only such numbers can be constructed from 1 in using plus and divide. Notice that if we remove 1 from 

the algebra of numbers, then its reachable algebra becomes empty and consequently its algebra of abstract 

syntax will be empty as well. 

An algebra is called reachable if it coincides with its reachable subalgebra. In particular, every algebra of 

abstract syntax is reachable. Reachable is also every empty algebra. Now we can formulate two important 

theorems. 

Theorem 2.12-2 For any two similar algebras Alg1 and Alg2, if Alg1 is reachable, then there is at most one 

homomorphism 

H : Alg1 ⟼ Alg2, 

and if this is the case, then the image of Alg1 in Alg2 is reachable. ■ 

 

Fig. 2.12-1 Reachable algebras 

Proof. The theorem and its proof are illustrated in Fig. 2.12-1. Since Alg1 and Alg2 are similar, they must have 

a common signature Sig and a common abstract syntax AbsSy(Sig). Therefore — on the ground of Theorem 

2.12-1 — there exist two unambiguously defined semantics of abstract syntaxes  

D1 : AbsSy(Sig) ⟼ Alg1 and 

D2 : AbsSy(Sig) ⟼ Alg2  

Now, if there exists a homomorphism H : Alg1 ⟼ Alg2, then the composition 

D1 ● H : AbsSy(Sig) ⟼ Alg2 

defined as the composition of their components is a homomorphism. Since D2 is the unique homomorphism 

between these algebras, we have 
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D1 ● H = D2, 

and since Alg1 is reachable, the above equation defines H unambiguously, because otherwise, we could define 

another homomorphism from AbsSy(Sig) into Alg2 which would contradict Theorem 2.12-1. This proves 

that the image of Alg1 in Alg2 is reachable. ■ 

As an immediate consequence of this theorem we have another theorem: 

Theorem 2.12-3 For every nonempty algebra Alg over signature Sig the following claims are equivalent: 

(1) Alg is reachable, 

(2) every homomorphism of the type H : Alg1 ⟼ Alg (for an arbitrary Alg1) is onto, 

(3) the semantics of abstract syntax D : AbsSy(Sig) ⟼ Alg is onto. ■ 

Proof Let Alg be reachable and let for some Alg1 similar to Alg there exist a homomorphism 

H : Alg1 ⟼ Alg, 

and let 

D : AbsSy(Sig) ⟼ Alg1 

be the abstract-syntax semantics of Alg1. In that case 

D ● H : AbsSy(Sig) ⟼ Alg 

is the abstract-syntax semantics for Alg, hence, since Alg is reachable, then D ● H must be onto, and therefore 

also H must be onto. Hence (1) implies (2). Now (3) follows from (2) as its particular case, and (2) implies (1) 

by the definition of reachability. ■ 

At the end of this section, one more useful theorem: 

Theorem 2.12-4 An algebra has a nonempty reachable subalgebra if and only if it contains at least one zero-

argument constructor. ■ 

Proof If there is a constant in the algebra, then it belongs to its reachable part, and hence, this part is not 

empty. If, however, such o constant does not exist, then in the grammar corresponding to that algebra, there 

are no constant monomials, and therefore all the carriers of abstract syntax are empty. Therefore the reachable 

part of Alg is an empty algebra. ■ 

Abstract syntaxes are, in general, not very convenient in practical programming, and therefore they are 

usually replaced by more user-friendly syntaxes historically called concrete syntaxes. In such a case, elements 

of abstract syntax correspond to parsing trees of concrete expressions (see, e.g. [3]).  

2.13 Ambiguous and unambiguous algebras 

An algebra Alg with a signature Sig is said to be unambiguous if its abstract-syntax semantics 

D : AbsSy(Syg) ⟼ Alg 

is a monomorphism, i.e., if for every carrier Car.cn of Alg and every element e of that carrier there is at most 

one word w : Lan.cn in the abstract syntax AbsSy(Syg) such that  

D.cn.w = e 

Algebras which are not unambiguous are called ambiguous. 

Algebras of denotations of programming languages are practically always ambiguous. For instance, the 

algebra AlgNum described in 2.10 (if supplemented with abstract errors to make their constructor total) is 

ambiguous since, e.g., two different words plus(plus(1,1),1) and plus(1,plus(1,1)) corre-

spond to the same number 3.  
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Fig. 2.13-1 Two ambiguous algebras 

Now consider two algebras Alg1 and Alg2 with a common signature Sig hence also with a common abstract 

syntax SkAbs(Sig). Let 

D1 : SkAbs(Sig) ⟼ Alg1 

D2 : SkAbs(Sig) ⟼ Alg2 

be two corresponding abstract-syntax semantics. Algebra Alg1 is said to be less (or equally) ambiguous than 

algebra Alg2, what we shall writer as 

Alg1 ≼  Alg2 

if the homomorphism D2 is gluing not more than D1 (Fig. 2.13-1), i.e., if for any two words w1 and w2 in 

abstract syntax that belong to the same carrier Car.cn the following implication holds: 

if   D1.cn.w1 = D1.cn.w2   then   D2.cn.w1 = D2.nn.w2           

Intuitively speaking, whenever an element of Alg1 may be constructed in two different ways, the two ways 

lead to the same element in Alg2. 

Ambiguous algebras play a certain role in the theory of programming languages since, for the majority of 

existing languages, their algebras of concrete syntax — if formally described — would turn out to be ambig-

uous. To explain this fact assume that AbsSy(Sig) is defined by the grammar 

NumExp = 0 | 1 | +(NumExp, NumExp), 

Alg1 is an algebra of infix expressions without parentheses defined by the grammar 

NumExp = 0 | 1 | NumExp + NumExp 

and Alg2 is the algebra of integers. Let now D1 replaces prefixes by infixes and removes parentheses.  

Anticipating the considerations of Sec. 3, the algebra of numbers is the algebra of denotations (of mean-

ings) for both our algebras of numeric expressions and the homomorphism D2 is the denotational homomor-

phism (the semantics) of the algebra of abstract syntax. Now, we may raise a question, if there exists a deno-

tational homomorphism  

D12 : Alg1 ⟼ Alg2 

from parentheses-free expressions into numbers.  

To answer this question notice that for such algebras and their corresponding homomorphisms the follow-

ing equalities hold: 

D1.[+(+(1,1),1)] = 1+1+1  D2.[+(+(1,1),1)] = 3 

D1.[+(1,+(1,1)]   = 1+1+1  D2.[+(1,+(1,1)]  = 3 
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As we see D1 is gluing not more than D2. In “practical mathematics”, hence also in programming languages, 

we frequently omit “unnecessary parentheses” whenever we deal with associative operations. The correspond-

ing algebras are, in general, ambiguous, and therefore, the denotational homomorphism D12 need not exist. If 

however, they are not more ambiguous than the algebras of denotations, then such a homomorphism exist 

which follows from the following theorem: 

Theorem 2.13-1 If Alg1 and Alg2 are similar and Alg1 is reachable, then the (unique) homomorphism  

D12 : Alg1 ⟼  Alg2 exists iff Alg1 ≼  Alg2. ■ 

This unique homomorphism may be constructed as (intuitively speaking) the composition of the inverse of D1 

with D2, hence 

D12 = D1
-1 ● D2. 

Although the inverse of D1 maps the elements of Alg1 into sets of abstract expressions, yet all these 

expressions are mapped by D2 into the same element of Alg2. For formal proof of this theorem, see [27].  

Of course, if D1 is an isomorphism then Alg1 is “equally ambiguous” as Alg2, and therefore the homomor-

phism D12 exists. 

2.14 Algebras and grammars 

The first step in the process of programming-language construction consists in defining an algebra of denota-

tions from which we derive a unique algebra of abstract syntax. Since the latter is usually not user-friendly, 

we transform it into a concrete syntax (cf. Sec. 2.12) using a homomorphism that does not glue more than 

abstract-syntax semantics. Since in a user manual concrete syntax should be described by an equational gram-

mar, we should raise a question, whether for any algebra of concrete syntax a corresponding grammar exists. 

To treat this problem formally, we need the concepts of a skeleton function.  

A function f on words over an alphabet A is said to be a skeleton function if there exists a tuple of words 

(w1,…,wk, wk+1) over A, called the skeleton of this function such that  

f.(x1,…,xk) = w1x1…wkxnwk+1 

An example of a skeleton function may be 

f.(exp-b,ins1,ins2) = if exp-b then ins1 else ins2 fi 

The skeleton of this function is (if, then, else, fi). Notice that the function 

f.( exp-b, ins1,ins2) = if exp-b then ins2 else ins1 fi 

is not a skeleton function since the order of arguments on the left-hand side of our equation does not coincide 

with the order on its right-hand side.  

In particular cases, a skeleton function may have more than one skeleton. E.g. the one-argument function 

f : {a}* ⟼ {a}*  

defined by equation 

f.(x) = x a 

has two skeletons (ε, a) and (a, ε), since it may be equivalently defined by the equation 

f.(x) = a x 

However, if we change the type of the function f to f : {a, b}* ⟼ {a, b}* without changing the defining 

equation, then this function has only one skeleton (ε, a).  

A many-sorted algebra will be called a syntactic algebra if it is a reachable algebra of words. 

A syntactic algebra will be called a context-free algebra if all its constructors are skeleton functions. Of 

course, algebras of abstract syntax are context-free. As was shown in Sec. 2.12, for each such algebra, we can 
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build an equational grammar that defines its carriers and constructors. Similarly, we may assign an equational 

grammar for any context-free algebra. 

Theorem 2.14-1 For every context-free algebra, there is an equational grammar that generates is carriers. 

■ 

The following theorem is also true: 

Theorem 2.14-2 For every equational grammar there is a context-free algebra with carriers defined by that 

grammar. ■ 

Proof Let 

X1 = pol1.(X1,…,Xn) 
…                  
Xn = pol1.(X1,…,Xn) 

be an equational grammar with the (unique) solution (L1,…,Ln). Assume that the polynomials of that grammar 

are expressed as unions of monomials. The corresponding algebra 

Alg = (Sig, Car, Fun, car, fun),   

is defined in the following way: 

• Sig = (Nc, Nf, ar, so) 

• Nc = {cn1,…,cnn} ― carriers’ names are arbitrary, but the number of these names must be equal to the 

number of equations in the grammar, 

• Nf = {fn1,…,fnm} ― function names are arbitrary, but the number of these names must be equal to the 

number of monomial occurrences in the grammar, 

• ar and so are defined in that way, that they correspond to the arities and sorts of monomials in the 

grammar, 

• Car = {L1,…,Ln}, 

• Fun ― the set of all monomials in our grammar, 

• car.cni = Li  for  i = 1,…,n 

Notice now that every mononomial in our grammar is (from the definition) a Chomsky’s mononomial (see 

Sec. 2.5), hence satisfies the equation: 

car.cni(x1,…,xn) = {s1} x1 … {sk} xk {sk+1) 

This completes the definition of our algebra. Observe that the defined algebra is unique up to the names of 

carriers and constructors.  

Now we have to show that the carriers of Alg are closed wrt all its constructors and that the algebra is 

reachable. For this proof see [27]. ■ 

Below is a simple example showing how to construct an algebra from a grammar. Consider the following 

grammar of a two-sorted language 

Number = 1 | x | Number + Number 

Boolean = Number < Number | Boolean & Boolean 

For simplicity, curly brackets for function names have been dropped. The operations of our grammar are 

defined by the following equations (the symbols of concatenation © has been omitted as well) where n-exp 

and b-exp with indexes denote numerical and boolean expressions, respectively: 

one.()       = 1 

variable.()      = x 
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plus.(n-exp1, n-exp2)  = n-exp1 + n-exp2 

less.( n-exp1, n-exp2) = n-exp1 < n-exp2 

and.( b-exp1, b-exp2) = b-exp1 & b-exp2 

An equational grammar is said to be unambiguous (resp. ambiguous) if the corresponding algebra is unam-

biguous (resp. ambiguous). Intuitively a grammar is ambiguous if there exists a word w that can be generated 

by that grammars in two different ways37. These “different ways” are different elements of the abstract syntax 

that are coimages of w wrt the abstract-syntax semantics (see Sec. 2.12). For instance, the word 1+1+1 may 

be generated in two different ways: 

plus(1,plus(1,1) 

plus(plus(1,1),1) 

As has been already mentioned, a concrete syntax of a programming language will be constructed as a 

homomorphic image of its abstract syntax. Since these syntaxes will be described by equational grammars, it 

is important to know which homomorphisms of syntactic algebras do not lead out of the class of context-free 

algebras.  

Let us start with an example of a homomorphism that destroys the context-freeness of an algebra. Let Alg 

be a one-sorted algebra with the carrier {a}+ and with two operations: 

h.() = a 

f.(x) = x a 

This algebra is of course, context-free. Now consider a similar algebra with a carrier  

{anbncn | n = 1,2,…} 

and constructors 

h.() = abc 

f.(anbncn) = an+1bn+1cn+1 

This algebra is not context-free since its carrier is a well-known example of a not context-free language (see 

[49]), but it is isomorphic with our former algebra where the corresponding isomorphism is: 

I.an = anbncn  for every n ≥ 1 

As is easy to see this isomorphism is not a skeleton function.  

A homomorphism H between two syntactic algebras is called a skeleton homomorphism (I recall that since 

syntactic algebra are reachable, such a homomorphism, if exists, is unique (Theorem 2.12-3))  if for every 

constructor fun.fn of the source algebra, for which  

so.fn = cn 

ar.fn = (cn1,…,cnn) 

there exists a skeleton (s1,…,sn+1), such that 

H.fn.(fun1.fn.(x1,…,xn)) = s1 x1…snxnsn+1 

In other words, a homomorphic image of every constructor of the source algebra is a skeleton constructor in 

the target algebra. 

Theorem 2.14-3 For every syntactic algebra Alg the following facts are equivalent: 

 

37 The usability of ambiguous grammars also from the perspective of parsing was investigated in 1972 by A.V. Aho 

and J.D. Ullman in [3]. 
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(1) Alg is context-free, 

(2) every homomorphism into Alg is a skeleton homomorphism, 

(3) there exists a skeleton homomorphism into Alg. 

For proof, see [27]. 

Let us consider now a simple example of a process of constructing a syntactic algebra for a given algebra38. 

Let the latter be a one-sorted algebra of numbers with three operations: 

create-nu.1 :        ⟼ Number 

plus    : Number x Number ⟼ Number 

times   : Number x Number ⟼ Number 

The corresponding abstract syntax, denote it by Syn-0, is defined by the following grammar with only one 

equation, where Exp denotes a language of numerical expressions with constant values: 

Exp = create-nu.1.()  |  plus(Exp, Exp)  |  times(Exp, Exp) 

The first step on our way to final syntax consists in: 

• replacing create-nu.1 by 1, 

• replacing plus and times by + and *, 

• replacing prefix notation by infix notation. 

This step corresponds to the following homomorphism: 

H.[create-nu.1.()] = 1 

H.[plus(exp1,exp2)] = (H.[exp1] + H.[exp2]) 

H.[times(exp1,exp2)] = (H.[exp1] ٭ H.[exp2]) 

This is of course a skeleton homomorphism and the corresponding context-free grammar is the following: 

Exp = 1 | (Exp + Exp) | (Exp ٭ Exp) 

In the second and the last step of syntax construction we would like to allow dropping out “unnecessary pa-

rentheses”, e.g. writing 1+1+1 instead of (1+(1+1)) and analogously for multiplication. Unfortunately this 

turns out to be impossible since each homomorhism which removes parentheses has to satisfy the equations: 

H.[(exp1 + exp2)] = H.[exp1] + H.[exp2] 

H.[(exp1 ٭ exp2)] = H.[exp1] ٭ H.[exp2] 

but this would mean that it glues expressions with different denotations, e.g. 

H.[(1+1)*(1+1)] = H.[((1+(1*1))+1)] = 1+1*1+1 

Although H is a skeleton homomorphism, which implies that its target grammar 

Exp = 1 | Exp + Exp | Exp * Exp 

is context-free, the corresponding algebra is more ambiguous than the algebra of numbers, hence a denota-

tional semantics of this syntax into the algebra of numbers does not exist.  

A known traditional way of solving this problem as e.g. in Algol ([5] and [71]) or in Pascal [56] consists 

in reconstructing the whole model of the language by introducing to the algebra of denotations and to the 

algebra of syntax three carriers Com (component), Fac (factor) and Exp (expression) and the following sig-

nature: 

 
38 In more general terms such processes will be discussed in Sec. 3.5.  
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c-to-e : Com   ⟼ Exp      component to expression identically 

+   : Exp + Com ⟼ Exp      addition 

f-to-c  : Fac    ⟼ Com     factor to component identically 

*   : Fac * Com  ⟼ Com     multiplication 

1   : Fac    ⟼ Fac      the generation of 1 as a factor 

e-to-c : Exp    ⟼ Fac      expression to factor identically 

The corresponding grammar of abstract syntax is the following: 

Exp = c-to-e(Com) | +( Exp, Com) 

Com = f-to-c(Fac) | *(Fac, Com) 

Fac = 1 | (Exp) 

and for the first (isomorphic) transformed syntax: 

Exp = (Com) | (Exp + Com) 

Com = (Fac) | (Fac * Com) 

Fac = 1 | (Exp) 

In this grammar names of identity functions have been omitted, which, however, does not destroy the unam-

biguity of the grammar, since these names appear in elements of different carriers. 

Now we can define a skeleton homomorphism that removes parentheses in each of three sorts of expres-

sions: 

E.[(com)]    = com 

E.[(com + exp)]  = E.[exp] + S.[com] 

C.[(fac)]     = C.[fac] 

C.[(fac ٭ com)] = F.[fac] ٭ C.[com] 

F.[1]      = 1 

F.[(exp)]    = (exp) 

This leads to the following context-free grammar 

Exp  = Com | Exp + Com 

Com = Fac | Fac ٭ Com  

Fac  = 1 | (Exp)     

This grammar may be also written in a direct way in using the constructor of iteration: 

Exp  = Com [+ Com]*   an expression is a sum of components 

Com = Fac [٭ Fac]*     a component is a multiplication of factors39 

Fac  = 1 | (Exp)      a factor is a constant or an expression in parentheses 

Observe that the parentheses-removal homomorphism is not an isomorphism, since it glues (1+(1+)) and 

((1+1)+1) into 1+1+1 and similarly for multiplication. However it does not glue “to much” since addition 

and multiplication are associative. On the other hand from expression ((1+1)*(1+1)) it removes only 

external parentheses.  

The denotational homomorphism for our grammar is now the following: 

Se.[com]    = Ss.[com] 
Se.[exp + com]  = Se.[exp] + Sc.[com]  
Ss.[fac]    = Sc.[fac] 
Ss.[fac ٭ com]  = Sc.[fac] ٭ Ss.[com] 

 
39 Note the difference between the operation of multiplication ٭, e.g. as in 11٭ and the operation of the iteration of 

languages *, e.g. as in [+ Com]*.     
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Sc.[1]     = 1 

Sc.[(exp))    = Se.[exp] 

Notice that the above equations express the school rules of priority of multiplication over addiction.  

 

Commentary 2.14-1 

The reader to whom I have promised that denotational models of programming languages will offer readable defini-
tions may have some doubts at this moment. So far, the simple language of arithmetic expressions that is very well 
known to every ground-school student has been described in a rather complicated way and moreover using advanced 
mathematics. This, of course, requires a commentary. 

First, what we can say to a student in a simple way, when “talking” to a computer, we have to express in a way 
appropriate for the interpreter. That “appropriate way” is a denotational homomorphism, which may be mapped one-
to-one into a code of an interpreter.  

Second, the discussed language serves only to illustrate the denotational method in an elementary example. 
The real advantage of the method will be appreciated  (I hope) when we introduce more advanced programming 
mechanisms such as declarations, types, instructions, recursive procedures, objects, etc. whose definitions require 
advanced mathematical tools. 

Third, in writing a user’s manual for our language, we may directly refer to our acquaintance with school mathe-
matics by saying that numerical expressions can be written and are calculated in a “usual way”, which frees us from 
the necessity of showing a grammar. However, as we shall see in Sec. 3.5 there are better solutions to that problem 
called colloquial syntax. 

 

Two following lessons may be learned from our exercise: 

First, the description of the simple operation of dropping out unnecessary parentheses requires rather com-

plicated and not very intuitive grammar. Such a grammar is necessary for the implementor but not for the user, 

who can be simply informed that numerical expressions are written and understood in a “usual way”.  

Second, the idea of dropping parentheses came out only at the level of second syntactic algebra, when the 

two formers have already been defined. Therefore, to implement the parenthesis-free notation one has to restart 

the construction of the model from scratch. In our simple example, this does not lead to too much work, but 

in real situations, things may look different. To avoid such problems, one should think about syntax as early 

as on the level of the algebra of denotations. This, however, contradicts the philosophy “from denotations to 

syntax” and also ruins the principle that denotations should be constructed in a maximally simple way.  

The above problems had been investigated in [25], [27], and [34]. A solution suggested there consists in 

assuming that the programmer’s syntax that will be called colloquial syntax does not need to be a homomor-

phic image of concrete syntax. In our example concrete syntax would be defined by the grammar: 

Exp = 1 | (Exp + Exp) | (Exp ٭ Exp) 

and colloquial syntax ― which allows for (although it does not force) the omission of parentheses ― would 

be defined by the grammar: 

Exp = 1 | (Exp + Exp) | (Exp ٭ Exp) | Exp + Exp | Exp ٭ Exp 

Observe that the algebra of colloquial syntax is not only not-homomorphic to the former but is even not similar 

since it has a different signature.  

Note, however, that it is easy to define a transformation that would map our colloquial syntax “back” into 

concrete syntax by adding the “missing” parentheses. Such a transformation will be called a restoring trans-

formation. In practice, this approach leads to a user manual that contains a formal definition of concrete syntax 

(a grammar) plus an informal rule which says, e.g., that parentheses may be omitted in the “usual way”40.  

 
40 As we are going to see in Sec.4.5.3 the situation may a little more complicated. 
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In the general case, a restoring transformation may be described formally or informally according to the 

complexity of colloquialization. Its formal definition is, however, always necessary for implementors who 

have to write a procedure that converts each colloquial program into its concrete version.  

More on colloquial syntax as such in Sec. 3.5, and on colloquialisms in Lingua in Sec. Sec. 4.5.3, 5.2.3, 

6.8.3, and 10.11.  

In the end, one methodological remark seems necessary. Languages discussed in this section covered only 

expressions without variables. Such a case has, of course, no practical value, and it was chosen only to make 

examples of algebras and corresponding grammars possibly simple. Starting from Sec. 3 we shall discuss 

methods of constructing denotational models for more realistic languages.   
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3 GENERAL REMARKS ABOUT DENOTATIONAL MODELS 

This section introduces the reader to the general theory of denotational models based on abstract algebras. 

Later on, this model is used in the construction of two layers of a virtual programming language Lingua: 

1. an applicative layer covering datalogical and typological expressions whose denotations are state-to-

values and state-to-type functions, respectively, 

2. an imperative layer covering instructions and declarations whose denotations are state-to-state func-

tions. 

3.1 How did it happen? 

Mathematicians working on mathematical models of programming languages were usually assuming (as in 

mathematical logic) that a programming language should be described by three mathematical objects: 

1. Syn — syntax, which in our model is a context-free syntactic algebra, 

2. Den — denotations, which in our model is an algebra similar (the same signature, see Sec. 2.11) to the 

algebra of syntax, 

3. Sem : Syn ⟼ Den — semantics, that associates denotations to syntactic elements and in our model 

is a many-sorted homomorphism between two mentioned algebras. 

Intuitively speaking, a denotational semantics describes the meaning of every complex syntactic object as a 

composition of the meanings of its components. This property of semantics — called compositionality — 

allows for the description of complex objects by means of so-called structural induction. 

It should be mentioned at this point that denotational (compositional) models of semantics — which for 

mathematicians have always been an obvious choice — have not been used in the first formal models of 

programming languages. Similarly to the prototypes of sewing machines that were mechanical arms repeated 

the movements of a tailor, and to the first steamboat engine droving oars, the early formal definitions of a 

programming language were the descriptions of a virtual computer executing programs41.  

This model of semantics, called later operational semantics, was abandoned after a few years of 

experiments because the description of the virtual machine was not less complex than the code of a real com-

piler, and still it was not a description of a “real” machine42. 

 
41 First metalanguage used to write such semantics in the 1970. was developed in IBM laboratory Vienna and was called 

Vienna Definition Language (VDL). Later some members of the IBM team have created a lab on the Danish Technical 
University in Lyngby with the aim of writing a denotational semantics in a metalanguage called Vienna Development 
Method (VDM) [13]. This language was used, among other applications, to describe the semantics of two programming 
languages Ada and Chill. In the case of the former, which was expected to become a universal programming language 
of all times, the process of writing its semantics resulted in repairing many inaccuracies of the language, and in devel-
oping first Ada compiler. Unfortunately, both Chill and Ada were excessively complex, and hence have been fairly 
quickly forgotten. 

 
42 To be precise this remark is true for sequential programming only (without concurrent processes), i.e. such that we 

shall deal with in this book. An operational semantics for concurrent programs was developed by Plotkin [72].  
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Fig. 3.1-1 Steamboat moving oars 

The road to denotational semantics was, however, not simple either. As was already mentioned, early denota-

tional models of programming languages were characterized by great mathematical complexity. Technically 

this was the consequence of the assumption that two following mechanisms were indispensable in high-level 

programming languages: 

1. the jump instruction goto that transfers program execution from one line of code to another one; this 

mechanism was available in practically all programming languages in the years 1960/70, and was in-

herited from low-level languages, where it was the only tool for building logical structures of programs, 

2. procedures that may take themselves as parameters; this construction was present in Algol 60 (see [5] 

and [71]) considered by academic community of 1960. as an indisputable standard. 

The requirement of having goto’s has led to a technically rather complex model of continuations43. That 

semantics was not only technically complex but above all quite far from programmers’ intuition. Inde-

pendently, at the turn of the 1960-ties to 1970-ties, IT professionals began to be aware of a risk imposed by 

goto instruction (see [43]). Programs with goto’s were difficult to understand, and therefore not always 

behave as expected by programmers. As a consequence goto’s were eliminated in favor of structured pro-

gramming mechanisms (see Sec.7.2) such as if-the-else, while and similar.  

The continuation model, although technically complex, was based on traditional mathematics. This cannot 

be said about the model of procedures that take themselves as parameters. Here we are not talking about 

recursive procedures that call themselves in their bodies — such procedures can be modeled by fixed-point 

equations (see Sec.6) — but about constructions of type f(f), where a function takes itself as an argument. 

Such functions were not known to mathematicians, because they cannot be described on the ground of classical 

set theory, let alone that mathematicians never needed such functions.  

In Algol 60 the construction f(f) was implemented in such a way, that a procedure f was receiving as a 

parameter not exactly itself, but a copy of its own code, which was inserted into its body during compilation. 

Such an operation was called copy rule. Mathematicians of the decade of 1960. were fascinated by this 

construction because it was challenging the existing concept of a function. As a consequence, the theory of 

reflexive domains was created by Dana Scott and Christopher Strachey [75] and was later described in detail 

by J.E. Stoy in a monograph [74]44. Although some mathematicians were investigating reflexive domains, for 

 
43 First author who introduced that concept — although under a different name of tail functions — was Antoni Mazurkie-

wicz [61]. Under the name of continuations it was introduced in [75] and later and popularized in [53]. 
44 To my colleagues mathematicians I may explain that the idea of reflexive domains was in fact a “hidden realization” 

of copy rule. The authors of this model used the fact that functions definable by programs are computable, hence can 
be "numbered" with natural numbers — each function f may be given a unique number n(f). In this model f(f) meant 
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software engineers, they were even more difficult and less intuitive then continuations. Pretty soon it turned 

out also that the ability of “uploading” procedures to themselves as parameters lead to even greater dangers in 

programming than the use of goto’s. Consequently, in later programming languages, self-applicable proce-

dures were abandoned. Unfortunately, some researchers decided that denotational semantics should be left as 

well.  

The denotational model introduced in this book uses neither continuations nor reflexive domains.  

In our model, the denotations of instructions are state-to-state functions where a state includes a component 

called a valuation. The concept of valuation has been well-known to mathematicians since the pioneering 

work of Alfred Tarski [76]. In those times the meanings of expressions were described as functions mapping 

valuations of variables 

v : Valuation = {x, y, z} → Value 

into values. E.g., the meaning of an expression  

2x+4y  

is a function  

F[2x+4y] : Valuation → Number 

such that 

F[2x+4y].v = 2 ٭ v(x) + 4 ٭ v(y) 

From there only one step to an observation that the meaning of an instruction 

x := 2x + 4y  

is such a transformation of valuations that the value of x in the new valuation is the value of the expression 

2x+4y in the former. This idea was applied in my paper [17], published in 1971, where I described a prototype 

of a denotational semantics of a very simple programming language.  

In turn, the inspiration to abandon the model of reflexive domains came to me from the book of Michael 

Gordon [53], where the author treats Scott’s reflexive domains as “usual sets” with the following commentary 

on page 29: 

“We shall not discuss the mathematics involved in Scott’s theory at all; our approach to recursive equa-

tions45 is similar to an engineering approach to differential equations, namely we assume they have solutions 

but don’t bother with the mathematical justification.” 

I have read Gordon’s book in the year 1981 during a train ride from Copenhagen to Århus, where I was 

going to meet Peter Mosses, a strong proponent of the theory of Dana Scott. The book was, for me, a significant 

breakthrough since, for the first time, I was reading a semantics of a programming language with understand-

ing not only its mathematics but also its IT content. The treatment of reflexive domains as "usual sets" was a 

real simplification. I also had the impression that this informal treatment did not lead to any mathematical 

problems. Only later, I realized that Gordon was actually not dealing with self-applicable functions. 

The approach of Michael Gordon, although intuitively simple, was mathematically not quite acceptable 

since the assumption that reflexive domains are usual sets is simply not true. It wasn’t, therefore, quite clear 

if his model did not lead to inconsistencies, which are undoubtedly critical when building a model to develop 

a logic of programs.  

To cope with this problem, Andrzej Tarlecki and I published in 1983 a paper [34], in which we constructed 

a denotational model of a programming language, where the domains of denotations are sets, and the denota-

tions of instructions are state-to-state transformations. This approach stimulated in 1980-ties the creation of a 

 
f(n(f)) which can be modelled on the ground of classical set theory. That was in fact a mathematical application of copy 
rule since n(f) may be regarded as the code of procedure f. 

45 M.Gordon is talking here about recursive domain-equations, which, in some case of non-continuous domain opera-
tors, lead to D.Scott’s reflexive domains.  
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metalanguage MetaSoft [24] in the Institute of Computer Science of the Polish Academy of Sciences. And 

this is the approach that I have chosen to write the present book.  

3.2 From denotations to syntax 

All early works on the semantics of programming languages were devoted to building semantics for existing 

languages. That has led to a tacit assumption that in designing a language, the syntax should come first into 

the play. Of course, there is a certain logic in this way of thinking, since how can we build a model for some-

thing that does not yet exist? After all, astronomers were describing the mechanics of celestial bodies when 

the Sun and the planet were already there.   

This way of thinking has, however, a particular vulnerability, since computer science cannot be compared 

to astronomy, physics, or biology, where we describe the world around us. Building a programming language 

is an engineering task, such as constructing a bridge or an airplane. Would any engineer ever think of first 

constructing a bridge basing on common sense and only then making all necessary calculations? Such a bridge 

would certainly collapse (cf. Sec. 1.1).  

In my approach, I reverse the traditional order where we first build syntax and only later define the deno-

tations. I will show how to build a language starting from an algebra of detonation from which syntax is 

derived then in such a way that a denotational semantics always exists.   

A sample programming language built in this book is called Lingua. I have chosen this name to commem-

orate the circumstances under which, from October to December 1969, I wrote my first denotational semantics 

of a very simple programming language. This work was later published in Dissertationes Mathematicae [17] 

as my postdoctoral thesis.  By three months as a scholar of the Italian Government, I was working in the 

Istituto di Elaborazione dell’Informazione in Pisa. I didn't yet know the works of Dana Scott or the concept of 

denotational semantics, and I constructed my language and its semantics on a model theory known in mathe-

matical logic. Only eighteen years later, in the year 1987, I described (in [25]) the idea of deriving syntax from 

detonations.  

3.3 Languages of the Lingua family  

As has been announced in Sec.3.2, the method of building a denotational model of a programming language 

will be illustrated on the example of a virtual language Lingua. This language will be constructed layer-by-

layer, starting with applicative mechanisms and enriching them by successive imperative constructions. Each 

successive layer will constitute an enrichment of the former by new tools: 

Lingua-A  an applicative part of the future language including datalogical and ty-

pological expressions hence the models of data and of types, 

Lingua-1  assignments, structural instructions, declarations of variables and defi-

nitions of types, 

Lingua-2  imperative procedures with mutual recursion and functional procedures 

with simple recursion, 

LinguaV-2  tools for building correct (validated) programs in Lingua-2, 

Lingua-SQL  an application programming interface (API) for SQL databases, 

Lingua-OO  object-oriented programming. 

From an algebraic perspective, the algebra of detonations of each language from Lingua-1 to Lingua-SQL 

will be an extension (in the sense as defined in Sec. 2.11) of the preceding algebra. In other words, each of the 

corresponding languages will be constructed from the former by adding new elements to the existing carriers, 

and/or new carriers, and/or new constructors. This scalability of algebras should lead to the scalability of 

possible implementations. 
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The model of Lingua-OO will differ from the former models by a more general concept of a state. The 

other constructions will be analogous. 

In this place, I should emphasize that Lingua is not regarded as a future standard of a denotation-based 

language but only as a platform of experiments on which a possible future standard could be built. 

3.4 Why do we need denotational models of programming languages? 

A denotational model of a programming language serves as a starting point for the realization of three tasks:  

1. building the implementation of the language, i.e., its parser and interpreter or compiler,  

2. creating rules of building correct specified programs in this language, 

3. writing a user manual.  

When designing a language in this way, we should observe one fundamental (although not quite formal) prin-

ciple: 

 

The principle of simplicity 

A programming language should be as simple to understand and easy to use as possible, 

although without damaging its functionality, mathematical clarity, and completeness of its 

description. The same applies to the manual of the language and to the rules of building 

correct programs. 

 

This principle shall be fulfilled by: 

1. making the syntax of the language as close as possible to the language of “usual” mathematics, e.g., 

whenever it is common, we allow infix notation and the omission of “unnecessary” parentheses,  

2. making the structure of the language (i.e., program constructors) leading to possibly simple rules of 

constructing correct programs (Sec. 7 and Sec. 8),  

3. making the semantics of the language easy to understand by the user rather than convenient for the 

implementor; for the latter, an equivalent implementation-oriented model may be written. 

Particular attention should be given to point 2 because the simplicity of the rules of building correct programs 

leads to a better understanding of programs by programmers. This fact was realized already in the years 1970 

and has led to the elimination of goto instructions. This decision resulted in a significant simplification of 

program structures, which increased their reliability. On the other hand, it did not limit the functionality of 

programming languages. 

Following point 3, we will sometimes — as typical in mathematics — "forget" about the difference between 

syntax and denotations. E.g., we will talk about the value of an arithmetic expression x + y, rather than 

about the value generated by its denotation. We will say that the instruction x:=y+1 modifies variable x, 

instead of saying that the denotation of this instruction modifies the memory state at variable x, etc. Of course, 

at the model’s level, we shall precisely distinguish syntax from denotations.  

3.5 Five steps to a denotational model 

Building up Lingua, we refer to an algebraic model described in Sec. 2.10 to Sec. 2.14. This model corre-

sponds to the diagram of three algebras shown in Fig. 3.5-1. We build it in such a way that the equation:  

As = Co ● Cs  

is satisfied, which guarantees the existence of a denotational semantics of our language. 
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The construction of a denotational model begins with an algebra of detonation Den. Its constructors un-

ambiguously determine the reachable subalgebra ReDen. Now, from the signature of Den we unambiguously 

derive the abstract syntax algebra AbsSy. The first of these steps is creative since it comprises all the signif-

icant decisions about future language. Contrary to it, the second step can be performed algorithmically.  

Since abstract syntax is usually not very convenient for programmers, we build a concrete syntax ConSy. 

In typical situations, we do it by replacing prefix notation by infix notation and introducing more intuitive 

names of constructors. In that case the corresponding homomorphism Co (concretization) is usually an iso-

morphism, and therefore there exist a unique homomorphism: 

Cs : ConSy ⟼ ReDen 

(concrete semantics), which is the semantics of concrete syntax. In this way, we create the main components 

of our denotational model.  

 

 

Fig. 3.5-1 An algebraic model of a programming language 

The step from abstract syntax to concrete syntax is creative — although rather simple.  For instance, instead 

of writing +(a,b)we write (a+b) and instead of writing if(x>0,x:=x+1,x:x-1)we write 

if x>0 then x:=x+1 else x:=x-1 fi 

The next step in building a user-friendly syntax consist in introducing so called colloquialisms. For instance 

instead of writing  

(a+(b+(c*d)) 

we shall write 

a + b + c*d 

assuming that multiplication binds stronger than addition. The introduction of colloquialisms into concrete 

syntax leads to colloquial syntax ColSy (Fig. 3.5-2), which most frequently has a different signature than 

concrete syntax, and therefore cannot be a homomorphic image of it. However, me make sur that there exists 

an implementable transformation  

Rt : ColSy ⟼ ConSy 

which removes colloquialisms, e.g., by adding the missing parentheses. Such a transformation is called a 

restoring transformation. 

In a programmer’s manual of a language with colloquialisms, concrete-syntax is defined by an equational 

grammar, and colloquialisms may be described informally. For instance, we explain that in writing arithmetic 

expressions, we can skip parentheses while maintaining the priority of multiplication and division over addi-

tion and subtraction.   

 



Andrzej Blikle (in cooperation with Piotr Chrząstowski-Wachtel), A Denotational Engineering of Programming Languages     74 

 

 

Fig. 3.5-2 An algebraic model of a language with colloquial syntax 

In such a case, an implementor receives a standard denotational model of a language plus a formal definition 

(algorithm) of restoring transformation. The execution of a program consists then of two steps: 

1. a pre-treatment of the source code by a restoring transformation, 

2. an interpretation or compilation of concrete-syntax code. 

Summing up our considerations, the construction of a denotational model of a programming language pro-

ceeds in five steps: 

1. In the first step, we build an algebra of detonations Den that includes the denotations of the future 

syntax as well as their constructors. In that step, significant decisions are taken about the functionality 

of the language. A language designer must specify the repertoire of constructors of Den  in such a way 

that the corresponding (unique) reachable subalgebra ReDen contains all the objects that we want to 

access through syntax. This will be illustrated on examples starting from Sec. 4. 

2. The signature of algebra Den uniquely determines the algebra of abstract syntax AbsSy and the cor-

responding homomorphism (abstract semantics) As. The step from the signature of Den to AbsSy can 

be performed in a fully algorithmic way. From the perspective of a language designer, this step does 

not require any creativity and may be performed by a software tool. 

3. The abstract syntax is usually not very user-friendly since it is restricted to prefix notation. We, there-

fore, build a concrete syntax ConSy, which is closer to programmers’ syntax. Algebraically it is an 

isomorphic image of the abstract syntax which guarantees the existence of a denotational semantics (a 

homomorphism) Cs : ConSy ⟼ Den. 

4. Now, the description of Cs can be algorithmically generated from the descriptions of As and Co. 

5. In the last step, we introduce colloquialisms and describe the restoring transformation. This step is 

creative again.  

As we see, the creative tasks of a language designer correspond to the first, third, and fifth steps. The second 

and fourth steps can be performed algorithmically.  

Here a methodological remark is in order. Although Theorem 2.13-1 allows us to build ambiguous concrete 

syntaxes, in practice, we shall not use this opportunity. It turns out that practically it is much easier to construct 

an unambiguous concrete syntax, and then “shift” all ambiguities to the level of colloquial syntax, rather than 

to prove that the ambiguities are admissible. Notice that if we build an ambiguous syntax, then — similarly to 

the case of colloquial syntax — we have to define some sort of a restoring transformation that removes the 

ambiguities.   

After having built a denotation model of a language, one can proceed to the definitions of correct-program 

constructors (Sec.8). This step corresponds to a historic task of developing programs’ logic in Hoare’s style. 
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In our case, however, we shall deal with a logic stronger than that of Hoare, since dealing with a so-called 

clean termination.  

3.6 Notational conventions of our metalanguage 

In the description of our sample language Lingua, we deal with three conceptual levels each associated with 

different fonts (cf. Sec. 2.12): 

1. at the level of the concrete and colloquial syntax of Lingua we use Courier New, 

2. at the level of the formal definition of our model, we use Arial with notational conventions coming 

from MetaSoft (Sec. 3.1), 

3. at the level of informal descriptions and comments, we use Times New Roman. 

Indices, which in traditional mathematics are written with reduced font size and at a lowered level like ai, will 

be treated as arguments of functions by writing a.i or a-i, where a is regarded as a function and i — as its 

argument.   

Due to a great variety of symbols occurring in the models of languages, instead of using one-character 

symbols as in usual mathematics, like a, b, c, α, β, γ... we use many-character symbols such as ide, sta, 
sto,…  which, in turn, is a common technique in writing programs. 

The names of sets always start with a capital letter, for example, Number or InsDen (instruction denota-

tions) and the names of their elements with small letters.  

Following the convention used in VDM (the Vienna Development Method; see [14]) the metavariables that 

run over domains are “announced” in the definitions of domains by writing, e.g.: 

ide : Identifier = Letter © Character* 

val : Valuation = Identifier ⟹ Data, 

which means that ide runs over Identifier and val over Valuation. At the end of the book, there is a list of the 

most frequently used alphanumeric symbols.  

As has been mentioned already in Sec. 2.8, the values that are strings of characters will be closed in apos-

trophes to distinguish them from metavariables. E.g., ide is a metavariable that runs over the domain of iden-

tifiers, and ‘abcd’ is a particular word which consists of four letters.   

In order to shorten certain conditional definitions of functions which in full version are written as a list of 

clauses: 

condition-1 ➔ value-1 

… 

condition-n ➔ value-n 

we shall also allow a compact version: 

condition-i  ➔ value-i  for i = 1;n  

This will be clear later when it comes to examples.  
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4 LINGUA-A — AN APPLICATIVE LAYER OF LINGUA 

4.1 Lingua as a strongly-typed language 

In a manual of SQL ([46] p. 786), we can read the following sentence46: 

If we do not provide (…) correct values to functions, we should not expect consistent results. 

Contrary to that philosophy, Lingua will be constructed in such a way that whenever a program will “send” 

incorrect values to a function, this function will generate an error message and/or initiate a recovery action. 

To achieve that goal, we equip Lingua with a type mechanism where: 

1. A type of data describes the structure of that data, e.g., that it is a boolean, a number or an array, and 

possibly also some other properties of data, e.g., that each element of an array is an integer from an 

interval [0,100].  

2. Each variable declared in a program has a fixed type assigned to it. This type is never changed during 

the execution of the program47, and all data assigned to that variable must be of that type.  

3. Programs operate on values that are triples including: a data, a description of its structure (called body), 

and a description of its other properties (called yoke). Values are assigned to identifiers in memory 

states, are passed to procedures as values of actual parameters (both value parameters and reference 

parameters), and when we evaluate an expression, we get a value as a result.  

4. Type checking precedes the following actions: 

a. assigning a value to a variable,  

b. applying an operation to its arguments (to values), 

c. passing actual parameters to a procedure or a function, 

d. returning formal reference parameters from a procedure. 

5. Types are stand-alone mathematical beings (rather than sets of data), but each type defines a unique 

set of data of that type called the clan of the type. 

6. Types and their constructors constitute an algebra of types, which provides tools for the construction 

of user-defined types. At the language level we have type expressions that evaluate to types, and type 

declarations that are used to name types, i.e. assign them to identifiers, and save them in memory states 

for subsequent use. 

In the end, it should be reemphasized that Lingua-A, which we are going to construct in Sec. 4, is not regarded 

as a prototype of a stand-alone applicative programming language, but only as an example of an applicative 

part of an imperative language. In Lingua-A, we have a mechanism of expression evaluation but not of state 

transformation (declarations and instructions). The latter mechanisms, called imperative, will be introduced 

in Lingua-1 (Sec. 5). 

 
46 My own translations from a Polish edition of this book.  
47 This condition will be weakened in Lingua-SQL where we have operations that add (or remove) an attribute in a row 

or in a table (Sec. 10).  
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4.2 The general idea of the model of types 

In early programming languages such as Fortran, Algol 60, Pascal, or Cobol, the concept of a data type was 

introduced in the first place to allocate appropriate memory space to variables. With boolean variables, single-

bit registers were assigned, with numeric variables — many-bit registers and finally with array variables — a 

larger memory space depending on the size of an array48. Over time it turned out, however, that assigning 

types to variables allows not only for better management of memory space but also contributes to a better 

understanding of the functionality of programs both by programmers and analysts, and allows one to capture 

several run time errors at the compile time. 

Today, when memory management is no longer so critical (except in some special applications, e.g., data-

bases), this second aspect remains relevant. It results not only for a better understanding of program behavior 

but also in the avoidance of type errors such as, e.g., sending inappropriate actual-parameters to a procedure, 

or inappropriate arguments to an operation, or assigning an inappropriate value to a variable. The realization 

of all these goals requires a type-tracking mechanism activated whenever we evaluate an expression or execute 

an instruction.  

In the denotational model of Lingua, the type-tracking mechanism is implemented by assuming that vari-

ables are assigned in states to triples called values, which include three elements: 

data — such as numbers, booleans, words, lists, arrays, records, etc. 

body — which is a finitistic object describing the structure of a data, e.g., that it is a 

number, a list or a record49, 

yoke — which describes other properties of data, e.g., that all elements of an array of 

numbers must belong to the interval [0,100]. 

Every value (data, body, yoke) generated during program execution must be well-typed by which we mean 

that data must have the structure described by body and the pair (data, body), which we call a composite 

must satisfy yoke.  

Bodies and types uniquely determine sets of data — with that body or of that type, respectively. This idea 

is formalized in the subsequent sections.  

Our model of types allows programmers to build complex types step-by-step in a bottom-up way as in the 

following example (here we anticipate the future syntax of Lingua): 

set years_register_type as  

 array-type number where all-of-ar 2000 ≤ value ≤ 2100 ee 

tes; 

This is a type declaration which assigns a type to an identifier (a type constant), in this case years_regis-

ter_type. The declared type is a type of one-dimensional arrays of numbers (body), which belong to the 

interval [2000, 2100] (yoke).  

Next type declaration defines a record type with four attributes ch_name, fa_name, birthyear, 

award_years, where the type of award_years is the predefined type years_register_type. The 

 
48 During the first course of programming in my university studies in the year 1960 we were writing programs for the first 

Polish computer named XYZ which was constructed in the Department of Mathematical Apparatuses of the Polish 
Academy of Sciences. The only memory of that computer was a RAM with the capacity of 1 K. Magnetic memories 
(types or discs) were not known at these times yet.  

49 Some inspiration for the introduction of this model was for me the idea used in the definition of programming language 
Ada written in a metalanguage VDM (see [14] and [15]). In that case however there were two semantics: a static 
semantics to compute types, and a dynamic semantics to compute data. The former was describing a type-checking 
mechanism activated at compile time, the latter ― program execution. Such a model can be convenient for the imple-
mentor of a language, but seems rather far from programmer’s perspective which we am trying to stick to in this book.  
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yoke of the new type is assumed to be trivial (always true), and therefore the clause where does not appear 

in the declaration. 

set employee_type as 

 record-type 

  ch_name, fa_name of type word 

  birthyear     of type integer, 

  award_years    of type years_register_type 

 ee 

tes; 

Having declared our two types, we now may declare two variables of these types: 

let smith be employee_type ee 

let awards_smith be years_register_type ee 

4.3 From data to values 

4.3.1 Data 

The first phase in designing a programming language usually consists in two steps: 

1. determining data that the future language will manipulate, 

2. determining operations on these data — we shall call them primary constructors — that will be avail-

able in the language. 

In a denotational framework data domains are defined by domain equations, whose solutions are usually larger 

than the sets of (reachable) data generated during the executions of future programs.  

In turn, primary constructors constitute a base for future constructors of expression denotations. On a purely 

abstract ground they may be assumed to be “given ahead”, but on a practical ground they must be defined by 

using operations available on some implementation platform. Here we choose the latter perspective based on 

an exercise of developing an experimental implementation of Lingua by the listeners of a course that I gave 

at the Department of Mathematics, Informatics, and Mechanics of Warsaw University in the year 2020 (see 

[33]). Our implementation platform in this case was Objective Caml (OCaml) (see [37], and [61]).  

Let us start with the domain of identifiers. This domain is not going to be a domain of data, but we shall 

need it in the definition of a domain of records. Let then 

ide : Identifier = Letter (Letter | Digit | { _ } )*  with len.ide ≤ 32  

let  : Letter   = {A,…,Z, a,…,z} 

dig : Digit   = {0,1,…,9} 

An identifier is a finite string of letters, digits, and underscores, which starts with a letter and contains not 

more than 32 characters. Here len.ide denotes the number of characters in ide.  

In defining a domain of identifiers we exclude from it some reserved keywords that will be used later in 

our syntax such as e.g., true, false, list, push, while etc. Let’s assume that this has been done. 

Next auxiliary domain that we define is the domain of characters that we shall need in defining the domain 

of words. Let 

car : Character = Letter | Digit | Sign 

sig : Sign   = { + , -, * , @, _}  

In this place the elements of Sign are just typical examples. We assume also that it contains all punctuation 

marks, but does not contain apostrophes.  
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Now, we are ready to define our domains of data. Here again we follow the mentioned implementation of 

OCaml. Our reals correspond to OCaml’s floating-point numbers. 

int  : Integer  = [−230, 230−1]  

rea : Real   = [- 1,8 × 10308 , 1,8 × 10308 ] 

boo : Boolean  = {tt, ff} 

wor : Word    = {‘}Character*{‘}   with len.wor ≤ 224 – 5 

lis  : List    = Datac* 

arr : Array   = Integer ⟹ Data 

rec : Record  = Identifier ⟹ Data 

dat : Data   = Integer | Real | Word | List | Array | Record  

A word is a string (possibly empty) of the elements of Character closed with apostrophes. The empty word 

is therefore ‘’.  

A list is a finite (possibly empty) sequence of arbitrary data.  

Arrays and records are mappings, i.e., finite functions. Arrays are one-dimensional, but since their elements 

can be arrays, the domain Array contains arrays of arbitrary dimensions. Identifiers that appear in records will 

be called record attributes.  

Lists, arrays, and records constitute structured domains, and their elements are called structured data. They 

may be tuples (lists) or mappings (arrays and records).  

All domains which are defined above, except Data and Identifier, will be referred to as data sorts, e.g., 

integer sort, word sort, array sort, etc. At this stage list and arrays may be not-homogeneous, i.e., may include 

elements of different sorts. Further, domains of indices of arrays may be arbitrary finite sets of integers, rather 

than (as usual) sets of consecutive integers. Moreover, all our structured data may be "arbitrarily large".  

Such “oversized” domains have been defined to make their definitions expressible by simple domain equa-

tions. Later the constructors of our algebras will assure that all reachable data will have “appropriate struc-

tures”. This technique of defining “too large” domains whose reachable parts are appropriately “truncated” is 

typical for denotational models and will be frequently used in the sequel of the book. As we already know 

from Sec. 2.12, only reachable elements of algebras have their representations in syntax.  

Having defined a family of data domains, we have to indicate a certain initial set of operations on data that 

we shall call primary constructors. As we have already mentioned, they must be definable by using construc-

tors available on the implementation platform. Let’s assume the following list of primary constructors: 

 

Families of zero-argument constructors (constants) 

create-id.ide  : ⟼ Identifier      for all  ide : Identifier 

create-in.int  : ⟼ Integer      for all int  : IntegerS 

create-re.rea  : ⟼ Real       for all rea : RealS 

create-wo.wor : ⟼ Word       for all wor : WordS 

 

For instance: 

create-id.size.() = size  where size : Identifier 

create-in.127.()  = 127 
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The presence of zero-argument constructors in our model means that programmers in Lingua may “enter from 

the keyboard” syntactic representations of identifiers and of the elements of IntegerS, RealS, and WordS. 

E.g. they may type 3 instead of((1+1)+1).  

The domains IntegerS, RealS, and WordS are subsets of Integer, Real, and Word, respectively, with 

syntactically representable elements. What are these sets will depend on the implementation of Lingua. At 

the general level, we only assume that they are finite. We don't assume, however, but also do not rule out, that 

the remaining constructors of data will generate data only from these sets.  

The domain of identifiers contains, by definition, only the elements that can be typed from the keyboard, 

and therefore the suffix "S" is not needed.  

In order to define the remaining constructors of data we introduce a certain universal set of abstract errors 

(cf. Sec. 2.8) that we denote by Error and assume that it contains all error messages (words) that may be 

generated during the executions of our programs. With every domain Domain we assign a corresponding 

domain that includes errors: 

DomainE = Domain | Error 

Now, the signatures of the remaining primary constructors of data are the following. 

Comparison constructors 

equal   : DataE x DataE      ⟼ BooleanE 

less    : DataE x DataE      ⟼ BooleanE 

Here we do not introduce logical connectives and, or and not in the domain BooleanE since, at the level of 

data, we do not define operations on booleans. They come only at the level of expression denotations in Sec. 

4.4.2, where we use McCarthy’s propositional calculus. 

Integer number constructors 

add-in   : IntegerE x IntegerE     ⟼ IntegerE 

subtract-in  : IntegerE x IntegerE     ⟼ IntegerE 

multiply-in  : IntegerE x IntegerE     ⟼ IntegerE 

divide-in  : IntegerE x IntegerE     ⟼ RealE 

Real number constructors 

add-re   : RealE x RealE       ⟼ RealE 

subtract-re : RealE x RealE       ⟼ RealE 

multiply-re  : RealE x RealE       ⟼ RealE 

divide-re  : RealE x RealE       ⟼ RealE 

Word constructors 

glue    : WordE x WordE      ⟼ WordE 

List constructors 

create-li  : DataE          ⟼ ListE 

push    : DataE x ListE       ⟼ ListE 

top    : ListE          ⟼ DataE  

pop    : ListE          ⟼ ListE 

Array constructors 

create-ar  : DataE          ⟼ ArrayE 

put-to-ar  : DataE x ArrayE      ⟼ ArrayE 
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change-in-ar : ArrayE x IntegerE x DataE  ⟼ ArrayE    replace an element of an array  

get-from-ar : ArrayE x IntegerE     ⟼ ArrayE  

Record constructors 

create-re   : Identifier x DataE      ⟼ RecordE 

put-to-re   : DataE x RecordE x Identifier  ⟼ RecordE 

get-from-re : RecordE x Identifier     ⟼ DataE    

change-in-re : RecordE x Identifier x DataE ⟼ RecordE    replace an element of a record 

In order to define primary constructors, we need an auxiliary concept. As we know, many of these constructors 

cannot be applied to arbitrary arguments from their domains. E.g., we can’t divide a number by zero, we can’t 

add two numbers if their sum would be too large, or we cannot select the 11th element from an array whose 

range of indices is [1,…,10]. In all such cases, we should protect Lingua operations from calling the corre-

sponding operation of the implementation platform. To describe such a mechanism, for every primary con-

structor, e.g. an integer division 

divide-in : IntegerE x IntegerE → IntegerE 

we define a function called trust test  

trust.divide-in : IntegerE x IntegerE ⟼ Error | {‘OK’} 

such that whenever this test yields ‘OK’, the constructor yields a correct result, and otherwise it generates an 

appropriate error messages. For instance: 

trust.divide-in.(int-1, int-2) = 
 int-i : Error         ➔ int-i for i = 1, 2 
 int-2 = 0         ➔ ‘division-by-zero’ 
 not (int-1 / int-2) : [−230, 230–1] ➔ ‘overflow’ 
 true           ➔ ‘OK’ 

where int/1 / int-2 denotes mathematical quotient of int-1 by int-2. Of course, the predicate 

(int-1 / int-2) : [−230, 230–1] 

must be implemented in such a way that it does not need to perform int-1 / int-2.  

We assume here that all our trust tests will be transparent for errors, i.e., whenever one of their arguments 

is an error, then — whichever comes first on the way from left to right — this error becomes the result of the 

test. Using our test, we can define the primary operation of division as follows: 

divide-in.(int-1, int-2) = 
 trust.divide-in.(int-1, int-2) : Error ➔ trust.divide-in.(int-1, int-2) 
 true            ➔ divide-in-IP.(int-1, int-2) 

where divide-IP is the denotation of division provided by the implementation platform. Most frequently the 

IP-division of integers will return a real as a result. If, however, we want to have a division of integers that 

rounds the result to its integer part, we have add some rounding operation, and set: 

divide-in-2-in.(int-1, int-2) = 
 trust.divide-in.(int-1, int-2) : Error ➔ trust.divide-in.(int-1, int-2) 
 true            ➔ round-2-in.(divide-in-IP.(int-1, int-2)) 

In these examples primary divisions may be regarded as a functional procedures that call the implementation-

platform (IP) division. In the general case, however, all that we have to assume is that primary operations are 

definable in the terms of trust tests and some IP operations. E.g. we might define our primary operations on 

lists by calling IP operations on tuples. Here we skip formal definitions of primary operations assuming that 

they are the parameters of our model.  
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In the end, we have to explain why propositional connectives and, or, not have been not included among 

primary constructors. This is the consequence of the fact that at the level of data-expression denotations (Sec. 

4.4.2), and of yokes (Sec. 4.4.4) the logical connectives have to satisfy McCarthy’s philosophy of lazy evalu-

ation (Sec. 2.9), and therefore we have to define them in each such level separately. This will be clear when 

we proceed to denotations.  

4.3.2 Bodies 

Having defined our domains of data we may proceed to bodies. As has been already said, bodies describe 

“internal structures” of data, and are used in building types. Bodies are defined as tuples, mappings (records), 

and their combinations. The domains of bodies are “derivative” to the corresponding domains of data. 

bod : SimBody  = { (‘boolean’), (‘integer’), (‘real’), (‘word’) }                simple bodies 

bod : LisBody = {‘L’} x Body                       list bodies 

bod : ArrBody = {‘A’} x Body                       array bodies 

bod : RecBody = {‘R’} x (Identifier ⟹ Body)                record bodies 

bod : Body  = SimBody | LisBody | ArrBody | RecBody             (4.3.2-1) 

bod : BodyE  = Body | Error 

Bodies of simple data are one-element tuples of words. Symbols 'L', 'A' and 'R' are called body initials and 

indicate sorts of structured bodies. E.g. ('A ', ('integer’)) is a body of arrays of integers, and  ('L', ('A ', ('real'))) 
is a body of lists, whose elements are arrays of reals.  

In the case of a list-body ('L ', bod) we say that bod is the inner body of the list-body and similarly for 

array-bodies. The elements of the domain 

bor : BodRec = Identifier ⟹ Body 

are called body records. Hence every record-body is of the form (‘R’, bor), where bor is a body record.  

The definitions of body domains anticipate the principle that all elements of a list or of an array must have 

a common body. 

Notice that an array body does not specify the number of array elements. The introduction of arrays with a 

fixed number of elements will be possible with the help of yokes (see Sec. 4.3.4).  

To associate data with bodies, we assign to each body a set of data called the clan of this body. Formally, 

we define a function CLAN-Bo that with each body assigns its clan: 

CLAN-Bo : Body ⟼ Sub.Data 

This function is defined by structural induction 

CLAN-Bo.(‘boolean’)   = Boolean 

CLAN-Bo.(‘integer’)  = Integer 

CLAN-Bo.(‘real’)   = Real 

CLAN-Bo.(‘word’)   = Word  

CLAN-Bo.(‘L’, bod)  = (CLAN-Bo.bod)c* 

CLAN-Bo.(‘A’, bod)  = Integer ⟹ CLAN-Bo.bod 

CLAN-Bo.(‘R’, [ide-1/bod-1,…,ide-n/bod-n]) = 

{ [ide-1/dat-1,…,ide-n/dat-n] | dat-i : CLAN-Bo.bod-i  for  i = 1;n } 

As we see, the union of all clans does not exhaust the domain Data, which means that some data have no 

bodies. For example, a non-homogeneous list of numbers mixed with words, and booleans, like (123, ‘abc’, 
tt), has no body. In this way, using bodies we restrict the set of reachable data. Details will be seen later.  
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We shall also need an auxiliary function: 

sort-b : BodyE ⟼ {(‘boolean’), (‘integer’), (‘real’), (‘word’), ‘L’, ‘A’, ‘R’} | Error 

sort-b.bod = 
 bod : Error         ➔ bod 
 bod = (‘boolean’)      ➔ (‘boolean’) 
 bod = (‘integer’)       ➔ (‘integer’) 
 bod = (‘real’)        ➔ (‘real’) 
 bod = (‘word’)       ➔ (‘word’) 
 bod : {‘L’} x Body      ➔ ‘L’ 

bod : {‘A’} x Body      ➔ ‘A’ 
bod : {‘R’} x (Identifier ⟹ Body)  ➔ ‘R’ 

Since bodies in composites should always coincide with corresponding data, whenever we perform an opera-

tion on data, we have to perform “in parallel” a corresponding operation of their bodies. These operations 

become constructors of an algebra of bodies AlgBod. We assume that this algebra has two following carriers: 

ide : Identifier — defined in Sec. 4.3.1 

bod : BodyE = Body | Error 

Now, with every primary constructor we associate a body constructor. To show this association explicitly, 

with every name pco of a primary constructor, we assign a name bo-pco of a body constructor.  

 

Zero-argument constructors   

create-id.ide : ⟼ Identifier    for all ide : Identifier 

 

In the case of identifiers, we skip the prefix bo- since the same (meta) constructor of identifiers will appear in 

many subsequently defined algebras. 

 

bo-create-bo  : ⟼ Body 

bo-create-in  : ⟼ Body 

bo-create-re  : ⟼ Body 

bo-create-wo  : ⟼ Body 

Comparison constructors 

bo-equal   : BodyE x BodyE     ⟼ BodyE 

bo-less    : BodyE x BodyE     ⟼ BodyE 

Arithmetic constructors for integers 

bo-add-in   : BodyE x BodyE     ⟼ BodyE 

bo-subtract-in : BodyE x BodyE     ⟼ BodyE 

bo-multiply-in : BodyE x BodyE     ⟼ BodyE 

bo-divide-in  : BodyE x BodyE     ⟼ BodyE  

Arithmetic constructors for reals 

bo-add-re   : BodyE x BodyE     ⟼ BodyE 

bo-subtract-re : BodyE x BodyE     ⟼ BodyE 

bo-multiply-re : BodyE x BodyE     ⟼ BodyE 
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bo-divide-re  : BodyE x BodyE     ⟼ BodyE  

Word constructors 

bo-glue    : BodyE x BodyE     ⟼ BodyE 

List constructors 

bo-create-li  : BodyE         ⟼ BodyE 

bo-push   : BodyE x BodyE     ⟼ BodyE 

bo-top    : BodyE         ⟼ BodyE  

bo-pop    : BodyE         ⟼ BodyE  

Array constructors 

bo-create-ar  : BodyE         ⟼ BodyE 

bo-put-to-ar  : BodyE x BodyE     ⟼ BodyE 

bo-check-in-ar : BodyE x BodyE     ⟼ BodyE  

bo-get-from-ar : BodyE x BodyE     ⟼ BodyE  

Record constructors 

bo-create-re   : Identifier x BodyE    ⟼ BodyE 

bo-put-to-re   : BodyE x BodyE x Identifier  ⟼ BodyE 

bo-get-from-re : BodyE x Identifier     ⟼ BodyE  

bo-check-in-re : BodyE x Identifier x BodyE ⟼ BodyE  

 

Below a few definitions as examples: 

 

bo-create-id.ide.() = ide     for all ide : Identifier 

bo-create-boo.() = (‘boolean’) 

bo-create-int.()  = (‘integer’) 

 

bo-equal.(bod-1, bod-2) = 
 bod-i : Error     ➔ bod-i      for i = 1,2 

bod-1 ≠ bod-2    ➔ ‘compared-bodies-must-coincide’ 
 not comparable.bod-1 ➔ ‘not-comparable’ 
 true        ➔ (‘boolean’) 
 

Here we introduce a metapredicate comparable to express the fact that only some data will be comparable 

with each other. E.g., numbers and words will be, but lists, arrays, and records will not.  

 
bo-divide-in.(bod-1, bod-2) = 
 bod-i : Error   ➔ bod-i        for i = 1,2 
 bod-i ≠ (‘integer’) ➔ ‘integer-expected’    for i = 1,2 
 true      ➔ (‘number’) 
 
bo-create-li.bod = 
 bod : Error  ➔ bod 
 true    ➔ (‘L’, bod) 
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bo-push.(bod-e, bod-l) =                    push bod-e on list bod-l 
 bod-i : Error   ➔ bod-i      for i = e,l 
 sort-b.bod-l ≠ ‘L’ ➔ ‘list-expected’ 
 let 
  (‘L’, bod) = bod-l 
 bod-e ≠ bod  ➔ ‘conflict-of-bodies’ 
 true     ➔ bod-l 
 
bo-create-ar.bod = 
 bod : Error  ➔ bod 
 true    ➔ (‘A’, bod) 
 
bo-put-to-ar.(bod-e, bod-a) =                   put bod-e to array bod-a 

 bod-i : Error   ➔ bod-i       for i = a,e 
 sort-b.bod-a ≠ ‘A’ ➔ ‘array-expected’ 
 let 
  (‘A’, bod) = bod-a 
 bod ≠ bod-e  ➔ ‘conflict-of-bodies’ 
 true     ➔ bod-a 
 
bo-create-rec.(ide, bod) = 
 bod : Error  ➔ bod 
 true    ➔ (‘R’, [ide/bod]) 
 
bo-put-to-rec.(bod-e, bod-r, ide) =         put bod-e to record bod-r on attribute ide 
 bod-i : Error   ➔ bod-i 
 sort-b.bod-r ≠ ‘R’ ➔ ‘record-expected’ 
 bod-r.ide = !   ➔ ‘attribute-already-exist’ 
 true      ➔ (‘R’, bod-r[ide/bod-e]) 
 
bo-check-in-re.(bod-r, ide, bod-e) =            check if new body coincides with the former 

 bod-i : Error   ➔ bod-i  for i = r, e 
 sort-b.bod-r ≠ ‘R’ ➔ ‘record-expected’ 
 let 
  (‘R’, bod-rb) = bod-r                      -rb for „record body” 
 bod-rb.ide = ?  ➔ ‘no-such-attribute’ 
 let 
  bod-ab = bod-rb.ide                     -ab for “attribute body” 

 bod-e ≠ bod-ab  ➔ ‘conflict-of-bodies’ 
 true      ➔ bod-r 
 

The last constructor anticipates the fact that if we replace a data assigned to a record attribute, the new data 

must have the same body as the former data. It will be used in Sec. 4.3.3 in the definition of a corresponding 

constructor of record composites.  

In the end, in the class of body constructors we distinguish a subclass of body-creating constructors which 

include the following constructors: 

bo-create-bo  :           ⟼ BodyE 

bo-create-in  :           ⟼ BodyE 

bo-create-re  :           ⟼ BodyE 

bo-create-wo  :           ⟼ BodyE 
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bo-create-li  : BodyE         ⟼ BodyE 

bo-create-ar  : BodyE         ⟼ BodyE 

bo-create-re   : Identifier x BodyE    ⟼ BodyE 

bo-put-to-re   : BodyE x BodyE x Identifier  ⟼ BodyE 

These are all constructors that we shall refer to (call) in body expressions (Sec. 4.4.4), and consequently in 

body constant declarations (Sec. 5.1.4.2).  The remaining constructors will be needed when we define the 

constructors of values (Sec. 4.3.6). 

4.3.3 Composites 

By a composite,50 we shall mean a pair consisting of a data and its (!) body. We assume that such a body is 

not an error. The domain of composites is defined by the following equation::  

com : Composite = {(dat, bod) | dat : CLAN-Bo.bod}                  (4.3.3-1) 

A composite (dat, bod) is said to carry the data dat and the body bod.  

A composite that carries a simple data is called simple composite an analogously are understood structured 

composites. We shall also talk about boolean composites, integer composites, list composites, etc. Since bool-

ean composites will play a special role, we introduce the corresponding domain: 

com : BooComposite = {(boo, (‘boolean’)) | boo : {tt, ff}} 

We also introduce two domains of composites and errors: 

com : CompositeE   = Composite   | Error 

com : BooCompositeE = BooComposite | Error 

Now we define an algebra of composites AlgCom with two carriers51: 

ide : Identifier    — defined in Sec. 4.3.1 

com : CompositeE   — defined above 

Now, we have to define constructors that will “call” the (already defined) constructors of data and bodies. To 

do that we expand the earlier introduced function sort (Sec. 4.3.1) onto composites and identifiers: 

sort-b.(dat, bod) = sort-b.bod 

sort-b.ide    = ide 

Notice that for simple composites function sort coincides with body, but for structured composites, this is not 

the case. We also introduce two new selection functions: 

data.(dat, bod) = dat 

body.(dat, bod) = bod 

data.ide   = ide 

body.ide   = ide 

 
50 In this place Andrzej Tarlecki asked a question, why I introduce bodies and composites. If every reachable data has 

a unique body, we could operate on data with implicitly assigned bodies. From a mathematical point of view that would 
be, of course, quite correct. However, I decided to show explicitly how the modification of data goes in parallel with 
the modification of their bodies. In this way I suggest a certain technique for the implementation of Lingua. This 
approach is also useful when we define types and type constructors (Sec. 4.3.5).  

51 Why the algebra of composites has only two carriers whereas we defined many sorts of data, will be explained at the 
end of Sec. 5.1.4.1. 
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Now we can proceed to the constructors of AlgCom. For each primary constructor pco we define a composite 

constructor co-pco, that will refer to (call) pco and bo-pco. Note that all our constructors are total functions 

which is due to the fact that CompositeE includes abstract errors. 

 

Zero-argument constructors 

create-id.ide   : ⟼ Identifier      for all ide  : Identifier52 

co-create-bo.boo : ⟼ CompositeE    for all boo  : Boolean 

co-create-in.int  : ⟼ CompositeE    for all int  : IntegerS 

co-create-re.rea : ⟼ CompositeE    for all rea  : RealS 

co-create-wo.wor : ⟼ CompositeE    for all wor  : WordS 

 

Comparison constructors 

co-equal   : CompositeE x CompositeE       ⟼ CompositeE 

co-less    : CompositeE x CompositeE       ⟼ CompositeE 

Arithmetic constructors for integers 

co-add-in   : CompositeE x CompositeE       ⟼ CompositeE 

co-subtract-in : CompositeE x CompositeE       ⟼ CompositeE  

co-multiply-in  : CompositeE x CompositeE       ⟼ CompositeE  

co-divide-in  : CompositeE x CompositeE       ⟼ CompositeE  

Arithmetic constructors for reals 

co-add-re   : CompositeE x CompositeE       ⟼ CompositeE 

co-subtract-re : CompositeE x CompositeE       ⟼ CompositeE  

co-multiply-re : CompositeE x CompositeE       ⟼ CompositeE  

co-divide-re  : CompositeE x CompositeE       ⟼ CompositeE  

Word constructors 

co-glue    : CompositeE x CompositeE       ⟼ CompositeE 

List constructors 

co-create-li  : CompositeE            ⟼ CompositeE 

co-push   : CompositeE x CompositeE       ⟼ CompositeE 

co-top    : CompositeE            ⟼ CompositeE  

co-pop    : CompositeE            ⟼ CompositeE  

Array constructors 

co-create-ar  : CompositeE            ⟼ CompositeE 

co-put-to-ar  : CompositeE x CompositeE       ⟼ CompositeE 

co-change-in-ar : CompositeE x CompositeE x CompositeE ⟼ CompositeE  

co-get-from-ar : CompositeE x CompositeE       ⟼ CompositeE  

 
52 See the note about create-id in Sec. 4.3.2. 
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Record constructors 

co-create-re   : Identifier x CompositeE        ⟼ CompositeE 

co-put-to-re   : CompositeE x CompositeE x Identifier    ⟼ CompositeE 

co-get-from-re : CompositeE x Identifier         ⟼ CompositeE  

co-change-in-re : CompositeE x Identifier x CompositeE   ⟼ CompositeE  

 

Now let us show a few examples of definitions of these constructors. All of them will be transparent for errors 

(see Sec. 2.8). Let us also recall that the “outputs” of these constructors, whenever they are not errors, must 

be composites, i.e., such pairs (dat, bod) that dat : CLAN-Bo.bod. 

 

co-create-id.ide.( )  = ide        for all ide  : Identifier 

co-create-bo.boo.( ) = (boo, (‘boolean’))  for both boo : Boolean 

co-create-in.int.( )  = (int, (‘number’))   for all int  : IntegerS 

etc. 

 

All the remaining constructors will be defined according to a common scheme: 

1. check if the argument composites are not errors, and if they are not then, 

2. compute the resulting body, and if no error is signalized then, 

3. compute the resulting data, and if no error is signalized then, 

4. combine body and data into composite.  

If in 1, 2 or 3 an error is signalized, then this error becomes the final result. Let us illustrate this scheme by an 

example of a division of integers: 

 

co-divide-in : CompositeE x CompositeE ⟼ CompositeE  

co-divide-in.(com-1, com-2) = 
 com-i : Error ➔ com-i   for i = 1, 2 
 let 
  (dat-i, bod-i) = com-i             for i = 1, 2 
  bod = bo-divide-in.(bod-1, bod-2) 
 bod : Error  ➔ bod 
 let 
  dat = divide-in.(dat-1, dat-2) 
 dat : Error  ➔ dat 
 true    ➔ (dat, (bod)) 

 

This definition should be read as follows: 

• If one of the arguments is an error, then that error — whichever comes first — is returned as a result. 

Formally this part of our definition should be written as 

com-1 : Error  ➔ com-1 
com-2 : Error  ➔ com-2 

• Otherwise, we compute the resulting body, and if it is an error (if one of the arguments is not (‘inte-
ger’), then an appropriate message is generated. 
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• Otherwise, we compute the resulting data, and if it is an error, then an appropriate message is gener-

ated. 

• Otherwise, we combine the resulting data with the resulting body into the final composite.  

Note that in this definition, we refer to (call) two previously introduced operations — a body operation bo-
divide-re, and a primary operation divide-in. First of them checks if the arguments of divide-in are integers. 

The second is responsible for all other checks.   

Depending on our definition of divide-in (see Sec. 4.3.1) the body constructor bo-divide-in returns (‘inte-
ger’) or (‘real’).  

A few other examples of composite-constructor definitions are the following. In each of them we refer to 

(call) one body constructor and one primary constructor: 

co-create-li : CompositeE ⟼ CompositeE 

co-create-li.com = 
com : Error            ➔ com  

 let 
  (dat, bod) = com 

bod-l   = bo-create-li.bod 
 bod-l : Error            ➔ bod-l 

let 
  list = create-li.dat 

true               ➔ (list, bod-l) 

Here, of course, create-li.dat = (dat), where (dat) denotes a one-element list whose only element is dat. As 

we see, we can make a list composite out of any composite independently of its body. However, the bodies of 

all future elements of that list must coincide with the body of the first element.  This rule is expressed in the 

definition of the next constructor, where the rule is explicit in the definition of bo-push (Sec. 4.3.2) 

co-push : CompositeE x CompositeE ⟼ CompositeE 

co-push.(com-e, com-l) =                       push com-e on list com-l 
 com-i : Error          ➔ com-i  for i = e, l 
 let 
  (dat-i, bod-i) = com-i    for i = e, l 
  bod    = bo-push.(bod-e, bod-l) 

let 
new-li = push.(dat-e, dat-l)  

 true             ➔ (new-lis, bod) 

With this operation we guarantee that all reachable list-composites will be homogeneous. In an analogous way 

we restrict the class of reachable array-composites. 

co-create-ar : CompositeE ⟼ CompositeE 

co-create-ar.com =  
 com : Error        ➔ com 
 let 
  (dat, bod)  = com   
  bod-a  = bo-create-ar.bod 
 bod-a : Error        ➔ bod-a 

let 
arr = create-ar.dat 

 true           ➔ (arr, bod-a) 

If at level of data we assume that  

create-ar.dat = [1/dat], 
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then the first index of an array will be always 1. In a similar way the operation of putting a new element at the 

end of an array should guarantee that the domain of every array is of the form {1,…,n}. 

co-put-to-ar : CompositeE x CompositeE ⟼ CompositeE 

co-put-to-ar.(com-e, com-a)  =                        put com-e to array com-a 
 com-i : Error            ➔ com-i   for i = e, a 
 let 
  (dat-i, bod-i) = com-i              for i = e, a 
  bod    = bo-put-to-ar.(bod-e, bod-a) 
 bod : Error             ➔ bod 

let 
  new-ar = put-to-ar.(dat-e, dat-a) 
 true               ➔ (new-arr, bod) 

where we assume that at the level of data we have 

new-ar  = dat-a[new-ind/dat-e] 
new-ind  = max.(dom.dat-a) + 1 

At the end one more definition which “inherits” a decision from the level of bodies: 

co-change-in-re : CompositeE x Identifier x CompositeE ⟼ CompositeE 

co-change-in-re.(com-r, ide, com-e) =     change in record com-r at attribute ide for com-e 

 com-i : Error               ➔ com-i   for i = r, e 
let 

  (dat-i, bod-i) = com-i      for i = r, e 
bod    = bo-check-in-re.(bod-r, ide, bod-e) 

 bod : Error                ➔ bod 
let 

  new-rec = change-in-re.(dat-r, ide, dat-d) 
 true                  ➔ (new-rec, bod-r)  

Here we assume that the corresponding data-constructor is the following: 

change-in-re.(dat-r, ide, dat-d) = dat-r[ide/dat-d] 

The inherited decision concerns the fact that if we assign new data to an attribute of a record, then the new 

body must be identical with the previous one. Consequently the body of the record does not change.  

4.3.4 Yokes 

The concept of a body allows expressing such properties of data, which in many programming languages 

exhaust the concept of a type, e.g., the type of booleans, numbers, lists, arrays, etc. Some languages, however, 

offer a higher expressiveness of types. For instance, in SQL (see Sec. 10), one may declare types of such tables 

(arrays of records), where a given column has no repetitions or types of such databases that satisfy a subordi-

nation relation between tables.  

To ensure such types in the model of Lingua, we introduce a sort of53 predicates on composites, which we 

shall call yokes. The domain of yokes is defined by: 

yok : Yoke = CompositeE ⟼ BooCompositeE 

By the clan of a yoke, we mean the set of composites that satisfy this yoke. Formally we define a function: 

CLAN-Yo : Yoke ⟼ Sub.Composite 

CLAN-Yo.yok = {(dat, bod) | dat : CLAN-Bo.bod and yok.com = (tt, (‘boolean’))} 

 
53 They are “sort of predicates” rather than just “predicates”, because their values are boolean composites rather than 

booleans.  
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Now we define an algebra of yokes AlgYok with three carriers: 

ide : Identifier = … 

tra  : Transfer = CompositeE ⟼ CompositeE 

yok : Yoke  = CompositeE ⟼ BooCompositeE 

The carrier of transfers is necessary to make the domain of reachable yokes “sufficiently rich”. This will be 

seen in the examples shown below. 

Notice that the algebra of yokes is “one level up” wrt composites since its elements are constructors of 

composites. There is also a particular singularity in our algebra since Yoke is a subset of Transfer.  

Our algebra does not contain errors but contains yokes and transfers that may return errors as their values. 

We say that a composite com satisfies a yoke yok if 

yok.com = (tt, (‘boolean’)) 

Anticipating future concrete syntax of Lingua the yoke expression 

value < 10 

represents a yoke that is satisfied whenever the input composite carries a number, and that number is less than 

10. In this expression, value is not a variable identifier, but a transfer expression which corresponds to an 

identity transfer pass.() (see later). Another example may be a yoke expression 

value + 2 < 10 

which is satisfied if the data carried by the current composite incremented by 2 is less than 10. Here value+2 

is a transfer expression. In turn, the yoke expression: 

record.salary + record.commission < 7000 

is satisfied if its argument composite carries a record with numeric attributes salary and commission 

whose sum is less than54 7000. Our three examples explain why we need transfers in our algebra. 

All constructors of transfers will be defined in such a way that all reachable transfers will be transparent 

for errors, i.e., will satisfy the equation: 

tra.err = err  for every err : Error 

Of course, the same rule concerns yokes, since yokes are just a particular case of transfers. 

The majority of transfer- and yoke constructors will be derived from composite constructors, although not 

necessarily from all of them. Which composite constructors we bring to the level of transfers is, of course, an 

engineering decision. Here we assume that transfers may fully “elaborate” only numerical and boolean com-

posites, whereas, for structured data, we shall make available only selection operations such as, e.g., co-get-
from-ar. These are, of course, engineering decisions.  

We may also have constructors that do not correspond to constructors of composites. As a matter of exam-

ple, we introduce one new operation, and two new predicates on sequences of integers, which we shall use to 

build constructors of transfers and yokes respectively.  

sum-in    : Integerc+  ⟼ Integer                the sum of Integers on a list 

unique    : Integerc+  ⟼ Boolean                   no repetition on a list 

increasing-in  : Integerc+ ⟼ Boolean             increasingly ordered list of integers 

By Tc[cco] we denote a transfer constructor associated with a composite constructor cco from AlgCom. 

Below is the list of constructors of AlgYok split into six groups:  

 

 
54 From a pure mathematical viewpoint we could omit the keywords in the syntax of composites, e.g. writing simply 

„< 10” or „+2<10”, but such syntax would be rather far from intuition.   
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(1) Constructors of identifiers 

create-id.ide  : ⟼ Identifier  for ide : Identifier 

 

(2) Identity transfer 

pass : ⟼ Transfer 

 

(3) Constructors of transfers based on simple-composite operations 

Here and in (4) and (5) Tc[cco] denotes a constructor of transfers (including yokes, of course), which is 

derived from a composite constructor cco. The metaconstructor Tc (transfers constructor) is defined a little 

later. 

Tc[co-create-bo.boo]  :        ⟼ Yoke      for boo : Boolean 

Tc[co-create-in.int]  :         ⟼ Transfer        for int : IntegerS 

Tc[co-create-re.rea]  :         ⟼ Transfer        for rea : RealS 

Tc[co-create-wo.wor]  :        ⟼ Transfer    for wor : WordS  

 

Tc[co-add-in]     : Transfer x Transfer ⟼ Transfer 

Tc[co-subtract-in]   : Transfer x Transfer ⟼ Transfer 

Tc[co-multiply-in]   : Transfer x Transfer ⟼ Transfer 

Tc[co-divide-in]    : Transfer x Transfer ⟼ Transfer 

 

Tc[co-add-re]    : Transfer x Transfer ⟼ Transfer 

Tc[co-subtract-re]   : Transfer x Transfer ⟼ Transfer 

Tc[co-multiply-re]   : Transfer x Transfer ⟼ Transfer 

Tc[co-divide-re]    : Transfer x Transfer ⟼ Transfer 

 

Tc[co-glue]     : Transfer x Transfer ⟼ Transfer 

 

(4) Constructors of transfers based on selection operations for list, arrays and records 

Tc[co-top]    : Transfer     ⟼ Transfer  

Tc[co-get-from-ar] : Transfer x Transfer ⟼ Transfer  

Tc[co-get-from-re] : Transfer x Identifier ⟼ Transfer  

 

(5) Constructors of transfers specific for transfers algebra 

yo-sum : Transfer ⟼ Transfer 

 

(6) Constructors of yokes based on predicates 

Tc[co-equal]   : Transfer x Transfer ⟼ Yoke 

Tc[co-less]   : Transfer x Transfer ⟼ Yoke 
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yo-unique    : Transfer     ⟼ Yoke 

yo-increasing-in  : Transfer     ⟼ Yoke 

 

(7) Constructors of yokes based on Kleene’s operators 

yo-and   : Yoke x Yoke ⟼ Yoke 

yo-or    : Yoke x Yoke ⟼ Yoke 

yo-not   : Yoke    ⟼ Yoke  

all-of-li    : Yoke    ⟼ Yoke 

exists-in-li  : Yoke     ⟼ Yoke 

all-of-ar   : Yoke     ⟼ Yoke 

exists-in-ar : Yoke     ⟼ Yoke 

 

Let us now give a few examples of definitions of our constructors. The constructors of identifiers are well-

known from the former algebra. The identity transfer maps a composite or error onto itself: 

pass.().com = com 

It has a technical character which will be shown a little later. The metaconstructor Tc is defined by the equa-

tion: 

Tc[cco].(tra-1,…, tra-n).com = cco.(tra-1.com,…,tra-n.com)                     (4.3-2) 

where n ≥ 0 and tra-i’s are either transfers or identifiers, and where we assume that ide.com = ide. For 

instance: 

Tc[co-get-from-ar].(tra-ar, tra-no).com = co-get-from-ar.(tra-ar.com, tra-no.com) 

Tc[co-get-from-re].(tra-re, ide).com  = co-get-from-re.(tra-re.com, ide) 

In the first case, tra-ar.com must be an array composite and tra-no.com must be a number composite. Oth-

erwise an error will be signalized from the cco level. Similar observations apply to the second case. Notice 

that in (4.3-2), if all tra-i are transparent, then  

Tc[dco].(tra-1,…, tra-n)  

is transparent as well. The scheme (4.3-2) applies also to zero-argument constructors, e.g., 

Tc[co-create-bo.tt] : ⟼ Yoke 

Tc[co-create-bo.tt].().com = 
 com : Error ➔ com 
 true    ➔ (tt, (‘boolean’))  

This yoke will be denoted by TT. Now consider the following examples of transfer expressions: 

A. 10, 

B. value, 

C. value + 2, 

D. record.salary + record.commission. 

Their respective denotations are the following transfers (for simplicity in these examples we assume that com 

is not an error): 

 

(A) Tc[co-create-in.10].().com = 
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co-create-in.10.() = 
(10, (‘integer’)) 

 

(B) pass.().com = com 

 

(C) Tc[co-add-in].(pass.(), Tc[co-create-in.2]).com = 
  co-add-in.(pass.().com. Tc[co-create-in.2].com)  = 
  co-add-in.(com, (2, (‘integer’))) 

 

Here we use pass to get two arguments for co-add-in out of one composite. 

 

(D) Tc[co-add-in.(Tc[co-get-from-re], (pass.(), salary), 

  Tc[co-get-from-re], (pass.(), commission) ).com = 

 
co-add-in.(co-get-from-re.(pass.(), salary).com, 

   co-get-from-re.(pass.(), commission).com ) = 

 
 
co-add-in.(co-get-from-re.(com, salary), 

   co-get-from-re.(com, commission) )  

 

Note that by combining transfers generated by constructors of group (4), we may select data stored on an 

arbitrary depth of structured data. E.g., if com carries a list of records, then, to get an element assigned to 

attribute age in a record which is on the top of the list, we have to evaluate an expression whose denotation 

is the following: 

Tc[co-get-from-re].(Tc[co-top].(pass.(), age).com = 

 co-get-from-re.(co-top.com, age) 

The corresponding expression in concrete syntax will look as follows: 

get-from-re(top(value), age) 

The summation constructor (group (5)) is defined as follows: 

 

yo-sum.tra.com = 
 com : Error    ➔ com 
 let 
  com-t = tra.com 
 com-t : Error    ➔ com-t 
 let 
  (dat-t, bod-t) = com-t 
 sort-b.bod-t ≠ ‘L’  ➔ ‘list-expected’ 
 let 
  (‘L’, bod-l) = bod-t 
 bob-l ≠ (‘integer’)  ➔ ‘integers-expected’ 
 let 
  int = sum.dat-t 
 oversized.int    ➔ ‘overflow’ 
 true       ➔ (num, (‘number’)) 
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where oversized is a predicate that checks if the resulting sum is not too large for a current implementation.  

Constructors of group (6) are rather obvious. 

Constructors of the last group (7) refer to Kleene’s propositional calculus (see Sec. 2.9) rather than to that 

of McCarthy, as it will be the case for data expressions (Sec. 4.4.2). The conjunction of yokes is defined as 

follows: 

yo-and : Yoke x Yoke ⟼ Yoke 

yo-and.(yok-1, yok-2).com = 
com : Error      ➔ com 
let 
 com-i = yok-i.com               for i = 1, 2 
com-1 = (ff, (‘boolean’))  ➔ (ff, (‘boolean’))  
com-2 = (ff, (‘boolean’))  ➔ (ff, (‘boolean’))  
com-i : Error      ➔ com-i         for i = 1, 2 
sort-b.com-i ≠ (‘boolean’) ➔ ‘boolean expected’    for i = 1, 2 
true         ➔ (tt, (‘boolean’)) 

As we see, to falsify this conjunction, is enough that at least one of its arguments carry ff. If this is not the 

case, then the result is either an error or a composite carrying tt. Constructor yo-not is the same as in McCar-

thy’s case, and yo-or is defined in a way that guarantees the satisfaction of De Morgan’s law.  

As we are going to see, McCarthy’s calculus will be assumed for data-expression denotations, because 

there — due to functional procedures (Sec. 6.5) — expressions may generate infinite executions. Since we do 

not allow functional procedures in transfers, we can assume a “more lazy” Kleene’s calculus. This calculus 

has also been assumed in SQL standards (Sec. 10). In this calculus, alternative and conjunction are commuta-

tive (except where both arguments are errors), whereas, in the calculus of McCarthy’s, they are not.  

The general-quantifier constructors for lists and arrays are defined in the following way (also in Kleene’s 

spirit):  

all-of-li : Yoke ⟼ Yoke    

all-of-li.yok.com =          
 com : Error             ➔ com 

sort-b.com ≠ ‘L’            ➔ ‘list expected’   
data.com = ( )            ➔ (tt, (‘boolean’))       
let 

  (dat-1,…,dat-n)  = data.com 
  (‘L’, bod)   = body.com                    list elements have all the same body 

  com-i    = yok.(dat-i, bod)                    for i = 1;n 
 (there exists 1 ≤ i ≤ n) com-i = (ff, (‘boolean’)) ➔ (ff, (‘boolean’)) 
 (for all 1 ≤ i ≤ n) com-i = (tt, (‘boolean’))   ➔ (tt, (‘boolean’)) 
 true                ➔ ‘never-false’ 

This definition may be said to be consistent with the Kleene’s definition of conjunction in the sense that 

ff and ee = ee and ff = ff 

The existential quantification is defined in an analogous way: 

exists-in-li : Yoke ⟼ Yoke    

exists-in-li.yok.com =          
 com : Error             ➔ com 

sort-b.com ≠ ‘L’            ➔ ‘list expected’         
data.com = ( )            ➔ (ff, (‘boolean’)) 
let 
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  (dat-1,…,dat-n)  = data.com 
  (‘L’, bod)   = body.com                    list elements have all the same body 

  com-i    = yok.(dat-i, bod)                    for i = 1;n 
 (there exists 1 ≤ i ≤ n) com-i = (tt, (‘boolean’)) ➔ (tt, (‘boolean’)) 
 (for all 1 ≤ i ≤ n) com-i = (ff, (‘boolean’))   ➔ (ff, (‘boolean’)) 
 true                ➔ ‘never-true’ 

Similarly this definition may be seen as consistent with the Kleene’s alternative where 

tt and ee = ee and tt = tt 

Quantifiers for arrays are defined in an analogous way. Why we assume Kleene’s calculus for yokes, rather 

than the calculus of McCarthy, may be justified by an example of an array a = [1/0, 2/1] and a yoke (in an 

anticipated syntax): 

exists-in-ar.(1/(a.i) > 0) iff 1/0 > 0 or 1/1 > 0 

In McCarthy’s calculus, the value of this yoke would be an error, which is certainly not what we would expect.  

4.3.5 Types 

As was already said, types describe properties of data. This rule includes the description of their structures by 

bodies and the description of some structure-independent properties by yokes. The domain of types is defined 

in the following way: 

typ : Type = Body x Yoke   

Types of the form (bod, TT) are called yokeless. We assume that all boolean types, i.e., types of the form 

((‘boolean’), yok), will be yokeless. Only such boolean types will be generated in the course of type- and 

data-expression evaluation. With every type, we associate a set of data called the clan of that type. To do that 

we define a function: 

CLAN-Ty : Type ⟼ Sub.Data 

CLAN-Ty.(bod, yok) = {dat | dat : CLAN-Bo.bod and (dat, bod) : CLAN-Yo.yok} 

A type whose clan is empty will be called an empty type. Now we may define an algebra of types named 

AlgTyp with five carriers:  

ide : Identifier = … 

bod : BodyE  = … 

tra  : Transfer = … 

yok : Yoke  = …  

typ : TypeE  = Type | Error 

and five groups of constructors: 

 

(1) Constructors of identifiers 

create-id.ide  : ⟼ Identifier  for ide : Identifier 

 

(2) Selected constructors of bodies 

bo-create-bo :           ⟼ BodyE 

bo-create-in :           ⟼ BodyE 

bo-create-wo :            ⟼ BodyE 

bo-create-li : BodyE         ⟼ BodyE 
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bo-create-ar : BodyE         ⟼ BodyE 

bo-create-re  : Identifier x BodyE    ⟼ BodyE 

bo-put-to-re  : BodyE x BodyE x Identifier  ⟼ BodyE 

 

(3) All constructors of the algebra of yokes 

See Sec. 4.3.4 

 

(4) One type constructor 

create-ty  : BodyE x Yoke ⟼ TypeE 

 

Constructors of groups (1), (2), and (3) are already known. In group (2), we include only these constructors, 

which build “new” bodies. E.g., we omit constructors of selection, and such constructors as bo-add, bo-and, 
bo-push. The only constructor which yields types is defined in the following way: 

create-ty.(bod, yok) = 
 bod : Error  ➔ bod 
 true    ➔ (bod, yok) 

Note that this constructor can be used to build empty types. However, as we are going to see, the mechanisms 

of creating values (Sec. 4.3.6) or of assigning them to variables (Sec. 5.1.5.2) will raise error messages in such 

cases. E.g., if we try to push a value on a list whose type is empty, then the yoke of this list will generate an 

error when checking if it is satisfied for the pushed value.  

One methodological comment is needed at the end. Originally (historically), yokes have been introduced 

in Lingua to build Lingua-SQL (Sec. 10), where yokes correspond to integrity constraints. It seems, however, 

quite reasonable to think of other applications of yokes. Imagine a situation where in an array of numbers we 

store results of some process of physical measurements. Suppose further that we are designing a software that 

should take action whenever a current measurement comes out of a specified fixed interval [p, q]. In that case, 

it would be enough to declare an array-type variable whose yoke describes the required condition. 

4.3.6 Values 

As was announced in Sec. 4.1, values are well-typed data of the form (dat, typ) where dat is of the type typ. 
The domain of values is, therefore, the following: 

val : Value  = {(dat, typ) | dat : CLAN-bo.typ } 

We also define 

val : ValueE  = Value | Error 

Values may also be regarded as triples (dat, bod, yok) or as pairs (com, yok). We shall use all three forms 

according to the need. Values will play an important role in our model: 

• they will be assigned to variables in memory states,  

• expressions will evaluate to values, 

• values will be passed to procedure calls as actual parameters and will be return as actual reference 

parameters. 

Values of the form (dat, bod, TT) will be called yokeless values. Values whose composite is boolean will be 

called boolean values. Following our assumption about boolean types (Sec. 4.3.5) we shall make sure that 

only two boolean values will be generable by our programs: 

( tt, (‘boolean’), TT) and ( ff, (‘boolean’), TT). 
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A value constructor  

va-con : ValIde-1 x…x ValIde-n   ⟼ ValueE    

where each ValIde-i is either ValueE or Identifier will be said to be transparent for errors if 

va-con.(arg-1,…,arg-n) = arg-k 

whenever agr-k is the first argument from the left that belongs to Error. On values we expand the predicate 

checking the volume of a data: 

oversized : Value  ⟼ {tt, ff} 

Now we may define the algebra of values AlgVal which will constitute a fundament for the future algebra of 

expression denotation. This algebra has four carriers: 

ide  : Identifier = … 

tra  : Transfer = … 

yok : Yoke  = … 

val : ValueE = … 

Constructors of this algebra may be split into three groups: 

1. all constructors of yokes and transfers from the algebra of yokes, 

2. value constructors derived from all composite constructors, 

3. specific value constructors. 

Constructors of the first group have been defined in Sec. 4.3.5. Constructors of the second group will “call” 

corresponding composite constructors but will also process yokes. For the latter reason, they can’t be — as 

was the case for transfers — defined with the use of one universal metaconstructor. Let us show the signatures 

of value constructors of categories 2., 3., and 4. (va- stands for “value”):  

 

Zero-argument constructors 

create-id.ide   :            ⟼ Identifier for all ide : Identifier 

va-create-bo.boo :            ⟼ ValueE  for all boo : Boolean 

va-create-in.int :             ⟼ ValueE  for all int : IntegerS 

va-create-re.rea :            ⟼ ValueE  for all rea : RealS 

va-create-wo.wor :             ⟼ ValueE  for all wor : WordS 

Comparison constructors 

va-equal    : ValueE x ValueE      ⟼ ValueE 

va-less     : ValueE x ValueE      ⟼ ValueE 

Integer number constructors 

va-add-in    : ValueE x ValueE      ⟼ ValueE 

va-subtract-in  : ValueE x ValueE      ⟼ ValueE 

va-multiply-in   : ValueE x ValueE      ⟼ ValueE 

va-divide-in   : ValueE x ValueE      ⟼ ValueE  

Real number constructors 

va-add-re    : ValueE x ValueE      ⟼ ValueE 

va-subtract-re  : ValueE x ValueE      ⟼ ValueE 
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va-multiply-re  : ValueE x ValueE      ⟼ ValueE 

va-divide-re   : ValueE x ValueE      ⟼ ValueE  

Word constructor 

va-glue     : ValueE x ValueE      ⟼ ValueE 

List constructors 

va-create-li   : ValueE         ⟼ ValueE 

va-push    : ValueE x ValueE      ⟼ ValueE 

va-top     : ValueE         ⟼ ValueE  

va-pop     : ValueE         ⟼ ValueE  

Array constructors 

va-create-ar   : ValueE         ⟼ ValueE 

va-put-to-ar   : ValueE x ValueE      ⟼ ValueE 

va-change-in-ar  : ValueE x ValueE x ValueE  ⟼ ValueE   

va-get-from-ar  : ValueE x ValueE      ⟼ ValueE    

Record constructors 

va-create-re    : Identifier x ValueE     ⟼ ValueE 

va-put-to-re    : Identifier x ValueE x ValueE  ⟼ ValueE 

va-get-from-re  : ValueE x Identifier      ⟼ ValueE  

va-change-in-re  : ValueE x Identifier x ValueE  ⟼ ValueE  

 

About the constructors of numeric, word, and boolean constants, we shall assume that they build yokeless 

constants. For instance, for every num : Number we set: 

va-create-in.int.() = (co-create-in.int.(), TT) = (int, (‘integer’), TT)  

All remaining constructors will be transparent for errors and will be defined according to the following  

scheme: if  

cco : ComIde x … x ComIde ⟼ CompositeE 

is a composite constructor, then  

va-cco : ValIde x … x ValIde  ⟼ ValueE 

(where ValIde is either ValueE of Identifier) the corresponding value constructor is defined according to the 

following (half formal) scheme: 

va-cco.(arg-1,…,arg-n) =  
 arg-i : Error       ➔ arg-i  for i = 1;n 
 let 
  c-arg-i =                         the i-th argument of cco 
   arg-i : Identifier ➔ arg-i 
   true     ➔ com-i where arg-i = (com-i, yok-i) 
  new-com = cco.(c-arg-1,…,c-arg-n) 
 new-com : Error     ➔ new-com 
 let 
  new-yoke = …     here a specific for va-cco construction of the new yoke (engineering decision) 

  boo-com = new-yok.new-com 
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 boo-com : Error  ➔ boo-com 
 boo-com = (ff, (‘boolean’))  ➔ ‘resulting-yoke-not-satisfied’ 
 true          ➔ (new-com, new-yoke) 

Let us explain this scheme on two examples.  

va-add.(val-1, val-2) = 
 val-i : Error      ➔ val-i      for i = 1,2 
 let 
  (com-i, yok-i)  = val-i        for i = 1,2 
  com      = co-add.(com-1, com-2) 
 com : Error      ➔ com 

true         ➔ (com, TT) 

Here we assume that the resulting yoke is TT independently of the argument yokes. This does not seem harm-

ful, since, as we are going to see in Sec. 5.1.5.2, yokes of numeric values will come to the play where we 

define the assignment instruction. There, in order to assign a value to a variable, the composite of the new 

value must satisfy the yoke assigned to the variable by its declaration.  

Sometime, however, the choice of a new yoke may be determined by the nature of a constructor as in the 

case of va-push: 

va-push.(val-e, val-l) =                        push val-e on list val-l 
 val-i : Error      ➔ val-i      for i = e,l 
 let 
  (dat-i, bod-i, yok-i) = val-i  for i = e,l 
  com = co-push.((dat-e, bod-e), (dat-l, bod-l)) 
 com : Error      ➔ com 
 let 
  boo-com = yok-l.com 
 boo-com : Error     ➔ boo-com 
 boo-com = (ff, (‘boolean’)) ➔ ‘resulting-yoke-not-satisfied’ 
 true         ➔ (com, yok-l) 

In this case, we have decided that the resulting yoke should be the yoke of the value, which carries a list. This 

is again just an example, but it seems to make sense that if we set a yoke of a list-value, then we probably 

wish to keep that yoke satisfied during the life-time of the list.  

At the end one comment about the manipulation of yokes at the level of values. At this level we only 

“compute” yokes of values created by value constructors, but we have no constructors that would change a 

yoke of a given value. We do not have nothing like a constructor 

change-yoke : ValueE x Yoke  ⟼ ValueE 

As we are going to see in Sec. 4.4.2, we are not going to have such mechanisms at the level of data expressions 

either.  

More yoke-manipulating mechanisms will be introduced at the level variable declarations (Sec. 5.1.4.1), 

where we assign an initial yoke to a variables, and at the level of yoke-replacement instructions (Sec. 5.1.5.3), 

where we can change a yoke assigned to a variable.  

All these decisions are, of course, of an engineering character.  

4.4 Expression denotations 

4.4.1 Memory states 

As was already mentioned in Sec. 3.1, to define functions plying the role of the denotations of expressions, of 

declarations and of instructions, one has to define the concept of a state. In a simple programming language, 
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states might be just valuations, i.e., mappings from identifiers to values, whatever the latter are. However, in 

the majority of programming languages, states may save more than just values. They may save: 

• values and pseudovalues (see later), 

• types as independent beings,  

• procedures55. 

By a pseudovalue, we mean a triple of the form (Ω, bod, typ), where Ω is a special element called a pseudo-

data. We assume that 

Ω    : CLAN-Bo.bod  for every bod : Body 

(Ω, bod) : CLAN-Bo.typ  for every bod : Body and typ : Type 

Intuitively Ω may be regarded as a “place for a data of an arbitrary type”. As we are going to see in Sec. 

5.1.4.1, pseudovalues will be assigned to variables by variable declarations. Pairs (Ω, bod) will be called 

pseudocomposites. We introduce a domain 

val : PsValue = {(Ω, typ) | typ : Type} 

In the sequel, whenever we say “a value”, we shall mean “a value or a pseudovalue”. A proper value is a value 

that is not a pseudovalue. Memory states will save arbitrary values assigned to identifiers, but data expressions 

will evaluate to proper values only (or errors). Our states will correspond to that part of computer memory 

where we save: 

• values assigned to the identifiers of data variables,  

• types assigned to the identifiers of type constants, 

• procedures (including functional procedures) assigned to the identifiers of procedure names. 

The domain of states is defined by the following domain equations: 

sta : State    = Env x Store                                  state 

env : Env    = TypEnv x ProEnv                     environment 

sto  : Store   = Valuation x (Error | {‘OK’})                       store 

vat  : Valuation  = Identifier ⟹ (Value | PsValue)              valuation56 

tye  : TypEnv  = Identifier ⟹ (Type | Body)                        type environment 

pre : ProEnv  = Identifier ⟹ Procedure                   procedure environment 

prc : Procedure = ImpProc | FunPro                     procedures57 

The split of a state into two pairs in the place of regarding it as one four-tuple is not accidental. It will be 

justified on the ground of our model of procedures (Sec. 6). The domain Procedure will be defined there too.  

A store is that component of a state which saves values and pseudovalues by binding them to identifiers in 

valuations. Observe that valuations do not save errors.  

An error message, when generated, becomes a component of a store and, since then, is passed to all subse-

quent states. Otherwise, the store is carrying ‘OK’ (no error). If the message is different from ‘OK’, then we 

say that the state (store) carries an error.  

For now, we will ensure that all imperative denotations (i.e., denotations that transform states, do not 

change states that carry an error (transparency)), and that all applicative denotations, (i.e., denotations that 

 
55 In the case of object-oriented languages this model may be even more complex (Sec. 11) 
56 The metavariable that runs over Valuation has been called “vat” rather than “val”, since the latter has been already 

reserved for the domain Value.  
57 Procedures may be imperative or functional.  
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transform states into values, or types), generate an error whenever a state carries an error. This principle shall 

not be observed when we introduce error-handling mechanisms (Sec. 5.1.5.5 and Sec. 10.9.6.4). 

Environments constitute these components of states which store user-defined bodies, types, procedures, 

and functions (functional procedures).  

In order to describe the mechanism of errors at the level of states, we introduce four auxiliary functions: 

 

error : State ⟼ Error | {‘OK’}                          error-selection operator 

error.(env, (vat, err)) = err 

 

is-error : State ⟼ Boolean                        error-detection predicate for states 

is-error.sta = 
error.sta ≠ ‘OK’ ➔ tt 
true     ➔ ff 

 

is-error : Store ⟼ Boolean                       error-detection predicate for stores 

is-error.(vat, err) = 
err ≠ ‘OK’ ➔ tt 
true   ➔ ff 

 

◄ : State x Error ⟼ State                        error-insertion operator 

(env, (vat, err)) ◄ err-1 =  
(env, (vat, err-1))  

4.4.2 The algebra of denotations of Lingua-A 

The algebra of expression denotations — which we shall denote by AlgExpDen — contains six carriers: 

ide : Identifier   = …                      defined earlier 

ded : DatExpDen  = State → ValueE              data-expression denotations 

bed : BodExpDen  = State  ⟼ BodyE               type-expression denotations 

tra  : TraExpDen  = Transfer                  transfer-expression denotations 

yok : YokExpDen  = Yoke                   yoke-expression denotations 

ted : TypExpDen  = State ⟼  TypeE               type-expression denotations 

The denotations of transfer expressions and yoke expression are not functions on states since we assume that 

transfers and yokes are not storable. This is, of course, an engineering decision.  

Below we define constructors of the denotations of data expressions, body expressions, and type expres-

sions. Constructors of transfers and yokes have been already defined in Sec. 4.3.4.  

4.4.3 Denotations of data expressions 

The partiality of data-expression denotations follows from the fact that in the future (Sec. 6.5), data expres-

sions will include procedure calls, which may generate infinite executions. Since program-termination prob-

lem is not decidable (see Sec. 7.5), we cannot expect that instead of an infinite execution, an error signal will 

be generated. It is to be emphasized, however, that the result of a data-expression evaluation will never be a 

pseudovalue.  
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A denotation of a data expression is said to be transparent for errors, if for any state that carries an error it 

evaluates to that error, i.e. 

ded.(env, (vat, err)) = err  for err ≠ ‘OK’. 

At the level of implementation, the appearance of an error means that this error is displayed on the monitor 

and program execution halts.  

A constructor of data-expression denotations is said to be diligent if it builds transparent denotations. All 

our constructors of data expression denotations will be diligent. Consequently, all reachable expression deno-

tations will be transparent. Their constructors split into four categories:                                                                                                                                        

1. one constructor of variables, 

2. constructors derived from non-boolean value constructors; for each such constructor vco we define a 

constructor of denotations Cdd.[vco] (Cdd stands for constructor of data-expression denotations),  

3. boolean constructors, 

4. one constructor that corresponds to conditional expressions. 

The list of our constructors is, therefore, the following: 

 

A constructor of variables 

ded-variable     : Identifier           ⟼ DatExpDen 

Zero-argument constructors 

Cdd.[va-create-id.ide] :              ⟼ Identifier  for ide   : Identifier 

Cdd.[va-create-bo.boo] :              ⟼ DatExpDen for  boo : Boolean 

Cdd.[va-create-in.int]  :              ⟼ DatExpDen for int  : IntegerS 

Cdd.[va-create-wo.wor] :              ⟼ DatExpDen for wor  : WordS 

Comparison constructors 

Cdd.[ded-equal]   : DatExpDen x DatExpDen      ⟼ DatExpDen 

Cdd.[ded-less]    : DatExpDen x DatExpDen      ⟼ DatExpDen 

Integer number constructors 

Cdd.[va-add-in]    : DatExpDen x DatExpDen      ⟼ DatExpDen 

Cdd.[va-subtract-in]  : DatExpDen x DatExpDen      ⟼ DatExpDen 

Cdd.[va-multiply-in]  : DatExpDen x DatExpDen      ⟼ DatExpDen 

Cdd.[va-divide-in]   : DatExpDen x DatExpDen      ⟼ DatExpDen  

Real number constructors 

Cdd.[va-add-re]    : DatExpDen x DatExpDen      ⟼ DatExpDen 

Cdd.[va-subtract-re]  : DatExpDen x DatExpDen      ⟼ DatExpDen 

Cdd.[va-multiply-re]  : DatExpDen x DatExpDen      ⟼ DatExpDen 

Cdd.[va-divide-re]   : DatExpDen x DatExpDen      ⟼ DatExpDen  

Word constructors 

Cdd.[va-glue]    : DatExpDen x DatExpDen      ⟼ DatExpDen 

List constructors 

Cdd.[va-create-li]   : DatExpDen            ⟼ DatExpDen 
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Cdd.[va-push]    : DatExpDen x DatExpDen      ⟼ DatExpDen 

Cdd.[va-top]     : DatExpDen            ⟼ DatExpDen  

Cdd.[va-pop]     : DatExpDen            ⟼ DatExpDen  

Array constructors 

Cdd.[va-create-ar]   : DatExpDen            ⟼ DatExpDen 

Cdd.[va-put-to-ar]   : DatExpDen x DatExpDen      ⟼ DatExpDen 

Cdd.[va-change-in-ar]  : DatExpDen x DatExpDen x DatExpDen ⟼ DatExpDen  

Cdd.[va-get-from-ar]  : DatExpDen x DatExpDen      ⟼ DatExpDen  

Record constructors 

Cdd.[va-create-re]   : Identifier x DatExpDen        ⟼ DatExpDen 

Cdd.[va-put-to-re]   : DatExpDen x DatExpDen x Identifier   ⟼ DatExpDen 

Cdd.[va-get-from-re]  : DatExpDen x Identifier        ⟼ DatExpDen  

Cdd.[va-change-in-re] : DatExpDen x Identifier x DatExpDen  ⟼ DatExpDen  

Boolean constructors   

ded-and      : DatExpDen x DatExpDen      ⟼ DatExpDen 

ded-or       : DatExpDen x DatExpDen      ⟼ DatExpDen 

ded-not       : DatExpDen            ⟼ DatExpDen 

Conditional-expression constructor 

when        : DatExpDen x DatExpDen x DatExpDen ⟼ DatExpDen 

 

The first constructor builds data-variable denotations (ded- stands for “data-expression denotations”):  

ded-variable : Identifier ⟼ DatExpDen 

ded-variable.ide.sta =  
is-error.sta  error.sta 
let 

(env, (vat, ‘OK’)) = sta 
vat.ide = ?   ‘undeclared-variable’ 
let 

(dat, bod, typ) = vat.ide 
dat = Ω    ‘uninitialized-variable’  
true     (dat, bod, typ) 

The calculations of the value of a variable (note that variable is an expression) starts from checking if its 

identifier ide has been declared and initialized. If that is not the case, then appropriate error signals are gener-

ated. In the opposite case the value assigned to ide becomes the final result.  

Constructors of the second category are all derived in a uniform way from non-boolean value constructors. 

Let vco be a value constructor, and let Cdd.[vco] be its counterpart. Then 

Cdd.[vco] : DedExpDenIde-1 x … x DatExpDenIde-n ⟼ DatExpDen 

Cdd.[vco].(arg-1,…,arg-n).sta =                      (4.4.2-1) 
 is-error.sta ➔ error.sta 
 for i = 1;n 
 do 
  (arg-i !: Identifier) and arg-i.sta = ? ➔ ? 
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  let 
   val-i = 
    arg-i : Identifier       ➔ arg-i 
    true          ➔ arg-i.sta 
 od 
 true    ➔ vco.(val-1,…, val-n) 

Note that in this scheme the value constructor vco “takes care” about all cases where an error message may 

be generated from the level of values. Let us see it on three examples: 

Cdd[va-create-in.int] : ⟼ DatExpDen 

Cdd[va-create-in.int].().sta = 
is-error.sta ➔ error.sta 
true    ➔ va-create-in.int.() 

We recall that   

va-create-in.int.() = (num, (‘number’), TT) 

In the case of numerical division we have the following definition 

Cdd.[va-divide-in] : DatExpDen x DatExpDen ⟼ DatExpDen 

Cdd.[va-divide-in].(ded-1, ded-2).sta =  
 is-error.sta ➔ error.sta 
 ded-i.sta = ? ➔ ?   for i = 1,2 
 let 
  val-i = ded-i.sta   for i = 1,2 
 true    ➔ va-divide-in.(val-1, val-2) 

To see a case where one of the arguments is an identifier consider putting a new attribute to a record: 

Cdd.[va-put-to-re] : Identifier x DatExpDen x DatExpDen ⟼ DatExpDen 

Cdd.[va-put-to-re].(ide, ded-e, ded-r).sta =       put attribute ide with value ded-e to record ded-r 
 is-error.sta ➔ error.sta 
 ded-i.sta = ? ➔ ?   for i = e, r 
 let 
  val-i = ded-i.sta   for i = e, r 
 true    ➔ va-put-to-re.(ide, val-e, val-r) 

Boolean constructors do not refer (call) boolean constructors of values since they have to cope with a lazy-

evaluation style (McCarthy’s) not only for errors but also for undefinedness (looping). 

dad-and : DatExpDen x DatExpDen ⟼ DatExpDen 

ded-and.(ded-1, ded-2).sta =                                            (4.4.2-2) 
 is-error.sta   ➔ error.sta 
 ded-1.sta = ?    ? 

let 
val-1 = ded-1.sta 

val-1 : Error   ➔ val-1 

let 
 (dat-1, bod-1, typ-1) = val-1 
dat-1 = ff     ➔ ff 58                                    (*) 
bod-1 ≠ (‘boolean’) ➔ ‘boolean-expected’ 
ded-2.sta = ?     ? 
let 

 
58 Notice that if dat-1=ff then we do need to check if bod-1 = (‘boolean’) since val-1 is a value, and therefore it must be 

well-typed. 
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val-2 = ded-2.sta 
val-2 : Error    ➔ val-2 

let 
(dat-2, bod-2, typ-2) = val-2 

bod-2 ≠ (‘boolean’) ➔ ‘boolean-expected’ 
true         (dat-2, (‘boolean’), TT)  

Notice that the computation starts from an attempt of computing the value of the first argument and if this 

value carries ff, then the computation terminates with this value (clause (*)). In this way we avoid the compu-

tation of the second argument which might loop indefinitely or generate an error message. Informally we may 

say that dad-end is not “transparent for undefinedness” of the second argument.   

Since ded-not must be “transparent for undefinedness”, we can define it in a standard way, i.e. by calling 

the corresponding value constructor: 

Cdd.[va-not] : DatExpDen  ⟼ DatExpDen 

Cdd.[va-not].ded.sta = 
 is-error.sta ➔ error.sta 
 ded.sta = ?  ? 

let 
val = ded.sta 

true    ➔ va-not.(val) 

The constructor corresponding to alternative is defined in a way which guarantees the satisfaction of De Mor-

gan’s law:  

ded-or.(ded-1, ded-2) = Cdd.[va-not].( ded-and.( Cdd.[va-not].ded-1 ,  Cdd.[va-not].ded-2 ) ) 

The unique constructor of the fourth category corresponds to conditional expressions59: 

when : DatExpDen x DatExpDen x DatExpDen ⟼ DatExpDen 

when.(ded-1, ded-2, ded-3).sta = 
 is-error.sta     ➔ error.sta 
 ded-1.sta = ?    ➔ ? 

let 
val-1 = ded-1.sta  

val-1 : Error     val-1 
let 

(dat-1, bod-1, yok) = val-1  
bod-1 ≠ (‘boolean’)  ‘boolean-expected’  
dat-1 = tt       ded-2.sta 
dat-1 = ff       ded-3.sta 

Note that two last clauses cover the case, where the computation of ded-2.sta or ded-3.sta does not termi-

nate. In this case, we have to do with lazy evaluation since in evaluating one of ded-i’s we do not need to care 

if the evaluation of the other is infinite or if it terminates with an error message60.  

Note that the evaluation of a conditional expression may lead to a situation where the type of the result 

depends on the property of input data, as, e.g., in the example: 

if x > 0 then x+2 else ‘abcd’ fi 

(here fi is a closing parenthesis of if). 

 
59 We call it “when” rather than “if” since the latter is reserved for conditional instructions. 
60 The acceptance of lazy evaluation in this place is a significant decision of language constructor, since it allows for the 

use of partial functions without the risk of error messages or infinite computations. Notice that if sqrt(x) denotes square 
root of x, then the expression if x>0 then sqrt(x) else sqrt(-x) fi evaluated eagerly would generate an error signal for 
every x different from 0.  
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4.4.4 Denotations of body-, trace, yoke- and type expressions 

In Lingua type expressions are used in three situations: 

1. in type-constant declarations (Sec. 5.1.4.2), where we save types in environments for later use in data-

variable declarations and in procedure declarations, 

2. in data-variable declarations (Sec. 5.1.4.1), where they indicate types of values assignable to these 

variables, 

3. in procedure declarations (Sec. 6.3.2), where they indicate types of values that may be passed to these 

procedures as parameters. 

Our algebra of type-expression denotations includes five carriers: 

ide : Identifier   = …                      defined earlier 

bed : BodExpDen  = State ⟼ BodyE             body-expression denotations 

tra  : TraExpDen  = Transfer                transfer-expression denotations 

yok : YokExpDen  = Yoke                  yoke-expression denotations 

ted : TypExpDen  = State ⟼ TypeE             type-expression denotations 

The fact that the denotations of transfer expressions and yoke expressions are not functions on states, is the 

consequence of an engineering decision that transfers and yokes will not be saved in computer memory. The 

only way we can get them is by an evaluation of appropriate expressions. In turn, the denotations of body 

expressions and type expressions are functions on states which results from another engineering decision that 

bodies and types may be assigned to identifiers in environments. Both decisions will be commented at the end 

of this section. 

The first constructor of body-expression denotations to be defined builds body constants, which are analo-

gous to data variables. In this case, we are talking about “constants” rather than “variables” since we assume 

that bodies assigned to identifiers, once established, are never changed during program execution. Below bod- 
stands for body-expression denotation.  

bod-constant : Identifier ⟼ BodExpDen 

bod-constant.sta = 
is-error.sta   ➔ error.sta 
let 

((tye, pre), sto) = sta 
tye.ide = ?    ➔ ‘body-constant-undefined’ 
not tye.ide : Body ➔ ‘body-expected’ 
true      ➔ tye.ide  

Notice that unlike for data variables, in this case, we do not have a situation where a constant has been defined 

but not initialized. It is the consequence of the fact that body declarations (Sec. 5.1.4.2) always assign concrete 

bodies to identifiers. 

The remaining constructors of body-expression denotations correspond to body building constructors (see 

Sec. 4.3.2) and are defined in a way analogous to the definitions of data-expression denotations. Let Cbd, 
which stands for constructor of body-expression denotations, denotes a constructor which builds constructors 

of expression denotations from constructors of bodies. If 

bco : BodIde-1 x … x BodIde-n ⟼ BodyE 

is a body constructor where BodIde-i stands for BodyE or Identifier, then 

Cbd.[bco] : BodExpDenIde-1 x … x BodExpDenIde-n ⟼ BodExpDen 

Cbd.[bco].(arg-1,…,arg-n).sta =               
 is-error.sta ➔ error.sta 

let 
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  bod-i = arg-i.sta  for i = 1;n  where ide.sta = ide 
true    ➔bco.(bod-1,…,bod-n) 

where bco “cares for errors”. In this group we include the following constructors: 

Cbd.[bo-create-bo]  :               ⟼ BodExpDen 

Cbd.[bo-create-in] :               ⟼ BodExpDen 

Cbd.[bo-create-wo]  :               ⟼ BodExpDen 

 

Cbd.[bo-create-ar]  : BodExpDen           ⟼ BodExpDen 

Cbd.[bo-create-re]  : BodExpDen x Identifier      ⟼ BodExpDen 

Cbd.[bo-put-to-re]  : Identifier x BodExpDen x BodExpDen ⟼ BodExpDen 

Now let’s see two exemplary definitions of our constructors. Analogously to the case of data-expression de-

notations, in this case each of such constructors “calls” a corresponding constructor of bodies.  

 

Cbd.[bo-create-in] : ⟼ BodExpDen 

Cbd.[bo-create-in].().sta = 
 is-error.sta ➔ error.sta 
 true    ➔ bo-create-in.() 

 

Cbd.[bo-put-to-re] : BodExpDen x Identifier x BodExpDen ⟼ BodExpDen 

Cbd.[bo-put-to-re].(bed-e, ide, bed-r.).sta =             e for “element”, r for “record” 
is-error.sta  ➔ error.sta 
let 

bod-i = bed-i.sta    for i = e, r 
 bod-i : Error  ➔ bod-i  for i = e, r 

true     ➔ bo-put-to-re.(bod-e, ide, bod-r) 

 

Constructors of transfers and yokes are known from Sec. 4.3.4, and the two remaining constructors of type-

expression denotations are the following: 

 

typ-constant : Identifier ⟼ TypExpDen 

typ-constant.ide.sta = 
is-error.sta   ➔ error.sta 
let 
((tye, pre), sto) = sta 
 tye.ide = ?   ➔ ‘type-constant-undefined’ 
 tye.ide : Body ➔ ‘type-expected’ 
true      ➔ tye.ide  

 

create-ty : BodExpDen x YokExpDen ⟼ TypExpDen 

create-ty.(bed, yok).sta = 
 is-error.sta ➔ sta 
 let 
  bod  = bed.sta 
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 true    ➔ create-ty.(bod, yok) 
 

The second constructor allows for the construction of types with empty clans. However, as we are going to 

see in Sec. 5.1.5.2, the mechanisms of assigning values to variables by assignment instructions will raise an 

error message ‘yoke-not-satisfied’ whenever we try to assign a value to a variable with empty-clan type. 

As we see, the only way we can “get a type” is either by “reading” it from a type environment, or by 

creating it from a body and a yoke. We do not allow the construction of structured types from earlier defied 

types, as it is the case with bodies. This an engineering decision that follows from the way we are going to use 

types in the denotations of assignment instructions and in the mechanisms of passing parameters to procedures. 

In each of these cases, we shall compare the type assigned to a variable, say (bod-v, yok-v), with the type of 

a value, say (dat, (bod-d, yok-d)) which is going to be assigned to that variable. In such cases, we shall only 

check if: 

bod-v = bod-d and 

(dat, bod-d) satisfies yok-v 

If we had structured type of say arrays of lists of records with yokes assigned to bodies at each of these levels, 

then the comparison of such types, or even of their “hidden bodies”, would hardly be implementable.  

Summarizing these remarks, and anticipating concrete syntax of Lingua-A, at the level of syntax a type 

expression may be of only one of the two forms: 

Identifier or 

create-type BodExp with YokExp ee 

4.4.5 Seven steps on the way to the algebra of expression denotations 

As has been already mentioned a few times, the design process leading from the selection of data domains to 

the algebra of expression denotations shows a certain way of building an interpreter of our future language.  

Let us now sum up this process. The arrows in Fir.4.4-1 indicate the way we proceed from one stage of our 

construction to another. Red arrows indicate additionally that the non-boolean constructors of a target algebra 

are defined with the help of a metaconstructor that transforms source-algebra constructors into target-algebra 

constructors.   

 

Data 

AlgBod AlgCom 

AlgTyp 

AlgYok 

AlgVal 

AlgExpDen 

Fig. 4.4-1 Seven steps from data to denotations 



Andrzej Blikle (in cooperation with Piotr Chrząstowski-Wachtel), A Denotational Engineering of Programming Languages     110 

 

 

1. We start by defining the domains of data. It is one of the most essential and creative steps in the process 

of designing a language. We decide here what are the sorts of objects that our language will manipulate, 

and what are the operations that will be used for this manipulation. At this stage, we also choose pri-

mary data constructors regarded as “given ahead” by a future implementation platform.  

2. In this step, we define the algebra AlgBod of bodies. This step is technically rather simple, but here 

we take the first essential decisions about future reachable data. E.g., we decide whether we shall 

allow, or not, nonhomogeneous lists and arrays. 

3. In the third step, we define the algebra of composites AlgCom. Its constructors are defined in a certain 

uniform way by referring to (calling) primary constructors and body constructors. Here we define the 

significant part of error-detection mechanisms of future expressions and, in this way, decide about the 

field of reachable data.  

4. Given composites, we may construct an algebra AlgYok of yokes, which describes properties of com-

posites. To make the carrier of yokes rich enough, we define transfers which are functions from com-

posites to composites. In the definitions of their constructors, we use a metaconstructor Tc which given 

a composite constructor cco returns a transfer constructor Tc[cco]. Yokes and transfers are going to 

be denotations of future transfer- and yoke expression of Lingua-A.   

5. Over the algebras of composites and yokes, we build an algebra AlgVal of values with four carriers: 

Identifier, Transfer, Yoke, ValueE. This algebra inherits all constructors of transfers and yokes, and 

additionally, to them, we define constructors derived from composite constructors — one for each. 

Although the latter refer to (call) composite constructors, we cannot define a universal metaconstruc-

tor, like Tc for transits, since each of value constructors builds not only a new composite (by calling a 

composite constructor) but also a new yoke. The “added value” of the algebra of values is the mecha-

nism of the creation of yokes along with the creation of composites. 

6. Over the algebras of yokes and bodies, we construct an algebra of types AlgTyp. This algebra includes 

all constructors od bodies, all constructors of yokes, and transfer, and one constructor which combines 

a body with a yoke. Theoretically, we may combine an arbitrary body with any yoke, but practically 

some of such combinations will lead to types with empty clans. Algebra of types constitutes a funda-

ment for the future carrier and constructors of the algebra of type-expression denotations.  

7. Over the algebras of values and of types, we construct an algebra AlgExpDen of expression denota-

tions. Its carrier DatExpDen is derived from the algebra of values, and the corresponding constructors 

are derived with the help of a metaconstructor Cdd which calls constructors of values. Analogously 

its carrier BodExpDen and its constructors are built with the help of a metaconstructor Cbd which 

calls constructors of bodies. 

It is worth commenting, in the end, a particular position of boolean constructors in these seven steps. They 

appear only among the constructors of yokes (Kleene’s constructors) and the constructors of data-expression 

denotations (McCarthy’s constructors). Of course, theoretically, we could have defined them in the remaining 

algebras, but we could not use them later in the boolean constructors of yokes and data-expression denotation. 

This is due to the fact that in both cases they are not error-transparent, and therefore in each case, we have to 

describe their specific mechanism of laziness “from the scratch”. For instance, at the level of data expressions, 

we have to express the fact that in evaluating an and-expression, if one of its arguments evaluates to ff, then 

the evaluation of the other is skipped.  



Andrzej Blikle (in cooperation with Piotr Chrząstowski-Wachtel), A Denotational Engineering of Programming Languages     111 

 

4.5 Algebras of the syntax of expressions 

4.5.1 Abstract syntax of Lingua-A 

According to the five-step method of building a denotational model of an applicative part of a programming 

language (see Sec. 3.5), what we have to do now, is to construct abstract, concrete, and colloquial syntax for 

Lingua-A.  

As we already know from Sec. 2.12, starting from the signature of an algebra of denotations (in this case 

AlgExpDen), we can “algorithmically generate” a corresponding abstract-syntax algebra (in this case Al-
gExpA), and from that algebra, we can generate (Sec. 2.14) an equational grammar of abstract syntax. Below 

we skip building an algebra of abstract syntax of expressions, and we directly build the corresponding gram-

mar.  

carriers of denotations carriers of syntaxes description of syntax 

Identifier IdentifierA identifier expressions 

DatExpDen DatExpA abstract data expressions 

BodExpDen BodExpA abstract body expressions 

TraExpDen TraExpA abstract transfer expressions 

YokExpDen YokExpA abstract yoke expressions 

TypExpDen TypExpA abstract type expressions 

Tab. 4.5-1 The carriers of the syntactic algebra 

To each of five carriers of the algebra of denotations, we assign a corresponding carrier of abstract syntax 

(Tab. 4.5-1).  

The equational grammar which describes our abstract-syntax will be written with notational conventions 

introduced in Sec. 2.14. For each syntactic category, there is one domain equation of our grammar, and for 

each constructor, there is one component (one line) of such an equation. According to the assumed convention, 

phrases that belong to syntax are typeset in Courier New. The first equation defines the domain of identifier 

expressions: 

 

Identifiers 

ide : IdentifierA =  
{Cdd.[va-create-id.ide].() | ide : Identifier)} 

  

Here create-id.ide.() is an element of abstract syntax, and ide, IdentifierA, and Identifier are 

metavariables that belong to the level of MetaSoft (Sec. 2). If we would like to write this equation formally in 

standard notation of abstract-syntax grammars as in Sec. 2.12, we had to explicitly list all (a finite number of) 

identifiers acceptable in a given implementation, i.e.: 

ide : IdentifierA = create-id.a.() | create-id.b.() | create-id.ab.() | … 

Since this would not be very practical, on a formal level we use the above abbreviation, and on manual’s level 

― where we define concrete syntax (see Sec. 4.5.2) ― we only list characters admissible in identifiers, e.g., 

{a,b,c,…,y,z,0,1,…,9}, and we indicate the maximal length of an identifier. On the implementation 

level, we write a simple program checking if a given identifier is not too long and if it does not contain pro-

hibited characters e.g., #, ?, !,… 

Here it should also be pointed out that whereas at the level of concrete syntax identifiers are just arbitrary 

strings (of restricted length) of admissible characters, such as e.g. 

birth-date 
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a counterpart of such an identifier at the level of abstract syntax is a phrase 

Cdd.[create-id.birth-date].() 

which stands for itself.  

The following four equations define the languages of data expressions, transfer expressions, yoke expres-

sions, and type expressions. In the first three lines of the first equation boo (in Courier New) is a syntactic 

representation of boolean data boo (in Arial), and similarly for num and wor. 

 

Data expressions  

dae : DatExpA =  

constants 

{Cdd[create-bo.boo].() | boo : Boolean}       | 

{Cdd[create-in.int].() | num: NumberS}      | 

{Cdd[create-wo.wor].() | wor : WordS}        | 

variables  

dat-variable.(Identifier)             | 

comparison expressions 

Cdd[va-equal].(DatExpA , DatExpA)         | 

Cdd[va-less].(DatExpA , DatExpA)         | 

integer number expressions 

Cdd[va-add-in].(DatExpA , DatExpA)        | 

Cdd[va-subtract-in].(DatExpA , DatExpA)      | 

Cdd[va-multiply-in].(DatExpA , DatExpA)      | 

Cdd[va-divide-in].(DatExpA , DatExpA)       | 

real number expressions 

Cdd[va-add-re].(DatExpA , DatExpA)        | 

Cdd[va-subtract-re].(DatExpA , DatExpA)      | 

Cdd[va-multiply-re].(DatExpA , DatExpA)      | 

Cdd[va-divide-re].(DatExpA , DatExpA)       | 

word expressions 

Cdd[va-glue].(DatExpA, DatExpA)          | 

list expressions 

Cdd[va-create-li].(DatExpA)           |  

Cdd[va-push].(DatExpA, DatExpA)          | 

Cdd[va-top].(DatExpA)              | 

Cdd[va-pop].(DatExpA)              | 

array expressions 

Cdd[va-create-ar].(DatExpA)           | 

Cdd[va-put-to-ar].(DatExpA, DatExpA)       | 

Cdd[va-change-in-ar].(DatExpA, DatExpA, DatExpA) | 

Cdd[va-get-from-ar].(DatExpA, DatExpA)      | 

record expressions 
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Cdd[va-create-re].(Identifier, DatExpA)       | 

Cdd[va-put-to-re].(Identifier, DatExpA, DatExpA)   | 

Cdd[va-get-from-re].(DatExpA, Identifier)      | 

Cdd[va-cut-from-re].(Identifier, DatExpA)      | 

Cdd[va-change-in-re].(DatExpA, Identifier, DatExpA)  | 

Boolean expressions 

ded-and.(DatExpA , DatExpA)            | 

ded-or.(DatExpA , DatExpA)            | 

ded-not.(DatExpA)                | 

conditional expressions  

when(DatExpA , DatExpA , DatExpA)  

The equations of transfer expressions and yoke expressions are derived from the signature of the algebra of 

yokes (Sec.4.3.4), since its constructors are at the same time the constructors of denotations. We omit the 

constructors of identifiers, since the corresponding equation is already in our grammar.  

 

Transfer expressions 

tre : TraExpA = 
{Tc[co-create-in.int].() | num : NumberS} | 

{Tc[co-create-wo.wor].() | wor : WordS}   | 

pass.()                 | 

Tc[co-add-in].(TraExpA, TraExpA)      | 

Tc[co-subtract-in].(TraExpA, TraExpA)    | 

Tc[co-multiply-in].(TraExpA, TraExpA)    | 

Tc[co-divide-in].(TraExpA, TraExpA)     | 

Tc[co-add-re].(TraExpA, TraExpA)      | 

Tc[co-subtract-re].(TraExpA, TraExpA)    | 

Tc[co-multiply-re].(TraExpA, TraExpA)    | 

Tc[co-divide-re].(TraExpA, TraExpA)     | 

yo-sum.(TraExpA)             | 

yo-max.(TraExpA)             | 

Tc[co-glue].(TraExpA, TraExpA)       | 

Tc[co-top].(TraExpA)           |  

Tc[co-get-from-ar].(TraExpA, TraExpA)   |  

Tc[co-get-from-re].(TraExpA, Identifier)  

 

Yoke expressions 

yoe : YokExpA = 
 Tc[co-create-bo.tt].()    | 

 Tc[co-create-bo.ff].()    | 

Tc[co-equal].(TraExpA, TraExpA)  |  

Tc[co-less].(TraExpA, TraExpA)  | 

 yo-unique.(TraExpA)      | 

yo-increasing-in.(TraExpA)   | 

yo-and.(YokExpA, YokExpA)    | 

 yo-or.(YokExpA, YokExpA)     | 

 yo-not.(YokExpA)       |  
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 all-of-li.(YokExpA)      | 

 all-of-ar.(YokExpA)  

 

Body expressions 

bex : BodExpA = 
 Cbd.[bo-create-bo].()            |  

 Cbd.[bo-create-in].()            | 

 Cbd.[bo-create-wo].()            | 

 bod-constant.(Identifier)            | 

 Cbd.[bo-create-li].(BodExpA)        | 

 Cbd.[bo-create-ar].(BodExpA)        | 

 Cbd.[bo-create-re].(Identifier, BodExpA)     | 

Cbd.[bo-put-to-re].(BodExpA, Identifier, BodExpA) |  

 

Type expressions 

tex : TypExpA = 
 type-constant.(Identifier)     | 

 create-type.(BodExpA, YokExpA) 

4.5.2 Concrete syntax of Lingua-A 

As has been explained in Sec. 2.14 and in Sec. 3.5, concrete syntax was historically meant as a syntax which 

was used by programmers. In our approach concrete syntax constitutes kind of a “denotational approximation” 

of programmer’s syntax, i.e. such a syntax for which a denotational semantics exists. The final programmer’s 

syntax is the result of introducing notational conventions called colloquialisms (Sec. 3.5). Along with collo-

quial syntax, we define a function called restoring transformation that maps colloquial syntax into concrete 

syntax (see Fig. 3.5-2 in Sec. 3.5). 

The present section contains an equational grammar of concrete syntax of Lingua-A. The corresponding 

expression algebra will be denoted by AlgExp. Its carriers are defined explicitly by the grammar, which is 

below, and its constructors are implicit in the equations of that grammar.  

The modifications of the abstract syntax described below correspond to a homomorphism Co (see Fig. 

3.5-2), which in our case, is an isomorphism, i.e., a one-to-one many-sorted function. Main changes on the 

way from abstract syntax to concrete syntax are the following: 

1. As boolean constants, we take true and false. 

2. Numeric constants are written with a colon as a separator between the integer part and the fractional 

parts, e.g. 12,473, 

3. Word constants are closed in apostrophes, e.g., ‘salary’. 

4. In the case of data variables and type constants instead of variable-dat(abc) and type-

constant(abc) we write abc in both cases. This gluing is not harmful (is isomorphic) since the 

glued expressions belong to different carriers of the algebra.  

5. Type expressions for simple yokeless types are written boolean, number, word. 

6. Arithmetic operators and predicates are written with infix notation and with “common” symbols +,  

/,  <, hence we write, e.g. (x + y) and (x < y) instead of add(x,y)and less(x,y). The 

“superfluous” parenthesis shall be dropped only at the level of colloquial syntax since such a transfor-

mation is not homomorphic. 
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7. For boolean constructors, we use common names or, and, not written in infix notation. In the 

context of data expressions, they denote McCarthy’s operators and in the context of transfer expres-

sions — Kleene’s operators. This situation does not lead to inconsistency since context always indi-

cates the appropriate meaning. The use of boldface typesetting (here and below) is only a “syntactic 

sugar”, which means that it helps humans to read programs, but is grammatically and denotationally 

not significant.  

8. Conditional expressions are written with an infix notation: 

 if DatExp then DatExp else DatExp fi, 

  and similar conventions are assumed for list-, array- and record constructors (see the 

  grammar below). 

9. Data- and type expressions, if written with infix notations, are closed with the parenthesis ee, which 

stands for end-of-expression.   

10. None of the keywords true, false, if, then,… can be used as an identifier. However, since 

this assumption is hardly expressible by a grammar, it is usually assured by lexical analyzer. 

Our new grammar is described below. In this case, the names of syntactic categories are written without any 

suffix (formerly it was A), since now we have to do with a grammar addressed to users, who do not need to 

know about abstract syntax at all. 

 

ide : Identifier =  
ide | …                      for every syntactically acceptable ide 

 

Data expressions 

dae : DatExp =  

constants 

true | false                | 

num                     | (for every num : NumberS) 

wor                    | (for every wor : WordS) 

variables 

Identifier                   | (constructor’s name is omitted) 

comparison expressions 

(DatExp = DatExp)              | 

(DatExp < DatExp)               | 

integer number expressions  

(DatExp + DatExp)               | 

(DatExp - DatExp)               | 

(DatExp * DatExp)               | 

(DatExp / DatExp)               | 

real number expressions  

(DatExp +. DatExp)              | 

(DatExp -. DatExp)              | 

(DatExp *. DatExp)              | 

(DatExp /. DatExp)              | 
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word expressions 

(DatExp © DatExp)               | 

list expressions 

list DatExp ee                | 

push DatExp on DatExp ee           |   

top(DatExp)                 | 

pop(DatExp)                 |  

array expressions 

array DatExp ee               |  

put-to-arr DatExp new DatExp ee         | 

change-arr DatExp at DatExp by DatExp     | 

array DatExp at DatExp ee            | 

record expressions 

record Identifier value DatExp ee        | 

add-atr Identifier value DatExp to DatExp ee   | 

record DatExp at Identifier ee           | 

remove-atr Identifier from DatExp ee      | 

change-rec DatExp at Identifier by DatExp ee   | 

boolean expressions 

(DatExp and DatExp)              | 

(DatExp or DatExp)              | 

(not DatExp)                | 

conditional expression 

if DatExp then DatExp else DatExp fi 

 

In the last clause, we use (a common) if rather than when (as in abstract syntax). This will not lead to any 

confusion with conditional instructions if-then-else-fi (Sec.5.1.5.5) since expressions and instructions 

belong to different carriers (syntactic categories). Note that at the level of denotations, we had to use different 

names for the corresponding constructors, since they are different functions.  

 

Transfer expressions 

tre : TraExp = 
 num              | for every num : NumberS 

 wor              | for every wor : WordS 

 value             | (in the place of pass.() ) 

(TraExp + TraExp)         | 

(TraExp - TraExp)         | 

(TraExp * TraExp)         | 

(TraExp / TraExp)         | 

(TraExp +. TraExp)        | 

(TraExp -. TraExp)        | 

(TraExp *. TraExp)        | 

(TraExp /. TraExp)        | 

sum (TraExp)          | 
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max (TraExp)          | 

(TraExp © TraExp)        | 

top(TraExp)          | 

array TraExp at TraExp ee    | 

record TraExp at Identifier ee 

 

The fact that transfer expressions 

top(TraExp)  

array TraExp at TraExp ee  

record TraExp at Identifier ee 

have the same structure and keywords as in the case of data expression is not harmful for the unambiguity of 

our grammar (i.e. does not destroy the isomorphicity of our transformation from abstract syntax to concrete 

syntax), because data expression and trace expressions belong to two different carriers of our algebras of 

syntax. 

 

Yoke expressions 

yoe : YokExp = 
true | false      | 

(TraExp = TraExp)     | 

(TraExp < TraExp)     | 

unique(TraExp)     | 

increasing-in(TraExp) | 

(YokExp and YokExp)    | 

(YokExp or YokExp)    | 

(not YokExp)      | 

all-of-li YokExp ee  | 

all-of-ar YokExp ee  

 

Boolean operators do not need to be marked with -yo, since the context of an expression will always indicate 

whether this a data expression, where McCarthy’s operators are used, or a yoke expression, where we use 

Kleene’s calculus.  

 

Body expressions 

bex :BodExp =  
 boolean                  | 

 number                  | 

 word                   | 

 Identifier                  | 
 list BodExp ee               | 

 array BodExp ee              | 

 record Identifier as BodExp ee         | 

add-atr Identifier value BodExp to BodExp ee | 
 

Type expressions 

tex : TypExp = 



Andrzej Blikle (in cooperation with Piotr Chrząstowski-Wachtel), A Denotational Engineering of Programming Languages     118 

 

Identifier            | 
type BodExp with YokExp ee 

4.5.3 Colloquial syntax of Lingua-A 

The definition of a colloquial syntax is an important step in the process of language design since it makes this 

language more user-friendly. We gain on clarity without losing anything of mathematical precision. 

We shall assume that colloquial syntax includes all concrete syntax, which means that the use of colloqui-

alisms is optional. Formally, each colloquialism expands our grammar of concrete syntax by a new clause, or 

— equivalently — our concrete-syntax algebra, by a new constructor. The algebra of colloquial syntax is, 

therefore, not similar to AlgDen, and therefore it cannot have denotational semantics in AlgDen. 

Below I show some examples of possible colloquialisms in Lingua-A. They are not necessarily the best 

solutions since the aim here is to show the method rather than to construct a real language. All colloquialisms 

are defined informally based on examples, which, however, should indicate a way to both ― grammatical 

clauses and a restoring transformation.  

4.5.3.1 A general rule for the layout of syntax 

We allow spaces, tabulators, carriage returns, boldface or underlining in any place, and assume that they do 

not change the (denotational) meaning of syntax. They all constitute “syntactic sugar”, and at the level of 

implementation should be removed by a restoring transformation. Boldface print is most frequently used to 

distinguish between identifiers and keywords. Of course, at the level of implementation, we must have a lex-

ical analyzer that would protect programmers against using constructor names as identifiers.  

We allow comments in programs which should be closed in parentheses # (left parenthesis) and $ (right 

parenthesis).    

4.5.3.2 Boolean data-expressions 

For boolean expressions, we allow the omission of the “unnecessary” parentheses and assume the priority of 

conjunction over alternative. E.g.  

• instead of writing (x or (y or z)) we write x or y or z  and 

• instead of writing (x or (y and z)) we write x or y and z   

In the first case, the restoring transformation may add parentheses in an arbitrary way, which is due to the 

associativity of the alternative. In the second ― the assumed priority has to be observed. 

4.5.3.3 Numeric data-expressions 

The case of numeric expressions is a little more complicated since in real situations the addition and the mul-

tiplication are not associative, which is due to the effect of overloading. E.g., if the maximal size of a number 

in our implementation is 10, then 

((-4 + 9) + 2) = 7    but 

(-4 + (9 + 2)) = ‘overflow’ 

A usual practice is therefore that parentheses-free expressions are evaluated from left to right in using the 

priorities between operations. E.g., the expression: 

x + y + z + x*y 

is restored to 

(((x + y) + z) + (x*z)) 
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4.5.3.4 Array data-expressions 

In this category we are going to have four colloquialisms. The first of them concerns the constructor of an 

array. For instance, the colloquial expression  

array [x, x+y, 3*y] 

describes the construction of an array with three numeric elements, and thus unfolds to the concrete expres-

sion: 

put-to-arr                   (add the value of 3*y to the array) 

put-to-arr                   (add the value of x+y to the array) 

array x ee                   create one-element array with the value of x) 

new x+y ee 

new 3*y ee 

The second colloquialism allows to write 

measurement-data.[x+1] 

where measurement-data is an array variable, instead of  

array measurement-data at x+1 ee 

and 

measurement-data.[x+1].[y-1] 

instead of: 

array  

array measurement-data at x+1 ee  

at y-1   

ee  

The case of adding new elements to an array may be treated analogously. We can write 

put-to-arr measurement-data new [x, x + y, 3*y] ee 

instead of  

put-to-arr 

put-to-arr  

put-to-arr measurement-data new x ee  

new x+y  

ee 

new 3*y  

ee 

and in the case of array modification (here we introduce a new symbol „<=”): 

change-arr measurement-data by 

s  <= x, 

s+1 <= x+y, 

3*p <= z-1 

ee 

which unfolds to: 

change-arr  

change-arr 

change-arr measurement-data at s by x ee 

at s+1 by x+y ee 

at 3*p by z-1 ee 
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4.5.3.5 Record data-expressions 

Examples for records may be similar to these for arrays. For instance, we may assume that a colloquial ex-

pression: 

record 

ch-name   := ‘John’, 

fa-name   := ‘Smith’, 

birth-date  := 1968, 

award-years := award-years-Smith 

ee 

corresponds to the concrete: 

add-atr award-years value award-years-Smith to 

add-atr birth-date value 1968 to 

add-atr fa-name value ‘Smith’ to 

record ch-name value ‘John’ ee 

ee 

ee 

ee 

and a colloquial expression 

employee.(fa-name) 

corresponds to the concrete: 

record employee at fa-name ee   

Notice that despite a similarity between selection expression from an array and from a record, there is no 

ambiguity since array indices are closed in bracket parenthesis and record indices in ordinary parenthesis.  

4.5.3.6 Transfer and yoke expressions 

Similarly, as for data expressions, we introduce school rules for dropping parentheses with corresponding 

priorities between operations. For instance, in the place of: 

(2 + value)< 10 

we write 

2 + value < 10 

In the place of 

array value at 5 ee 

which means that if the input composite carries an array, then we take the fifth element of that array, we 

colloquially write 

array.[5] 

It is to be recalled that in this case, array is not an array variable — as, e.g., in the expression measure-

ment-data.[x+1] — but a keyword. We can also write 

array.[5].[7] 

instead of 

array 

array value at 5 ee 

at 7  

ee   
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which means that in an input array, which should be an array or arrays, we choose the fifth element, and then 

the seventh element of the former element.  

Analogously we may construct a transfer expression that selects the value of a record attribute where that 

record is a top element of a list. A concrete-syntax expression 

record top(value) at age ee 

could be colloquialized to  

top.(age) 

4.5.3.7 Type expressions 

Here we give only one example. A colloquial type expression 

type 

 record 

name     as string, 

birth-year  as number 

with 

birth-year > 2000 

ee 

unfolds to the following concrete form  

type 

add-atr birth-year value number 

to 

record 

name as string 

ee 

with 

 record value at birth-year ee > 2000 ee 

ee 

4.6 A sketch of the semantics of Lingua-A 

Let us recall that AlgExp and AlgExpDen denote respectively the algebras of concrete syntax and of denota-

tions of Lingua-A. Since in our case the former is isomorphic with the latter, there is a unique homomorphism: 

Cs : AlgExp ⟼ AlgExpDen 

with five components: 

Sid  : Identifier ⟼ Identifier 

Sde   : DatExp ⟼ DatExpDen 

Stre  : TraExp  ⟼ TraExpDen 

Syoe  : YokExp ⟼ YokExpDen 

Sbe  : BodExp ⟼ BodExpDen 

Ste  : TypExp  ⟼ TypExpDen 

Below some examples of the definitions of these components. With Courier, we write not only concrete 

syntactic elements but also corresponding metavariables, as, e.g., ide or dae-i. This convention is, of 

course, not very formal but hopefully will improve the readability of our closes. We recall that Cdd[vco] 
denotes a constructor of data expression denotations, which corresponds to a constructor vco of values.  
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Identifiers 

Sid : Identifier ⟼ Identifier 

Sid.[ide] = create-id.ide.()   for every ide                         algebraic form 

Sid.[ide] = ide       for every ide                     direct form 

 

Data expressions 

Sde : DatExp ⟼ DatExpDen  i.e. 

Sde : DatExp ⟼ State → ValueE 

 

Sde.[true]   = Cdd[va-create-bo.tt].()                            algebraic form 

Sde.[true].sta =                            direct form 

is-error.sta ➔ error.sta 
true    ➔ (tt, (‘boolean’), TT)  

 

Sde.[ide] = ded-variable.(Sid.[ide])   for ide : Identifier 

Sde.[ide].sta =  

is-error.sta ➔ error.sta 
let 

(env, (vat, ‘OK’)) = sta           
ide = Sid[ide] 

vat.ide = ?   ‘undeclared-variable’ 
let 

(dat, bod, yok) = vat.ide 
dat = Ω    ‘uninitialized-variable’ 
true     (dat, bod, yok)  

 

Sde.[(dae-1 / dae-2)] = Cdd[va-add].(Sde.[dae-1], Sde.[dae-2]) 

Sde.[(dae-1 / dae-2)].sta = 

 is-error.sta     ➔ error.sta 
 Sde.[dae-i].sta = ?  ➔ ?          for i = 1, 2 

let 
  (dat-i, bod-i, yok-i) = Sde.[dae-i].sta      for i = 1, 2 

  bod-i ≠ (‘real’)   ➔ ‘real-expected’     for i = 1, 2 
 let 
  rea = divide-re.(dat-1 + dat-2)61 
 rea : Error      ➔ rea 

true        ➔ (rea, (‘real’), TT) 

 

Transfer expressions 

 
61 Here we use the fact that composites are well-structured, hence if bod-I = (‘number’) for I = 1,2, then dat-i : Number 

for I = 1,2. 
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It is to be recalled that transfer denotations are transfers themselves, which, in turn, are functions from com-

posites and errors to composites and errors. 

 

Stre : TraExp ⟼ Transfer 

Stre : TraExp ⟼ CompositeE ⟼  CompositeE 

 

Stre.[value] = pass.() 

Stre.[value].com = com 

 

Stre.[(tre-1 / tre-2)] = Tc[co-divide].(Stre.[tre-1], Stre.[tre-2])  i.e. 

Stre.[(tre-1 + tre-2)].com = 

 com : Error   ➔ com 
 let 
  com-i = Stre.[tre-i].com      for i = 1,2 

 com-i : Error   ➔ com-i      for i = 1,2 
 let 
  (dat-i, bod-i) = com-i        for i = 1,2 
 bod-i ≠ (‘number’) ➔ ‘number-required’  for i = 1,2 
 dat-2 = 0    ➔ ‘division-by-zero’ 
 let 
  num = round.(dat-1 ÷ dat-2) 
 oversized.int  ➔ ‘overflow’ 
 true      ➔ (num, (‘number’)) 

 

Yoke expressions 

Syoe.[true] = create-tr-bo.tt.()   i.e. 

Syoe.[true].com = 

 com : Error ➔ com 
 true    ➔ (tt, (‘boolean’)) 

 

Syoe.[all-li tre satisfy yoe ee] = all-of-li.(Stre.[tre], Syoe.[yoe])  i.e. 

Syoe.[all-li tre satisfy yoe ee].com =  

com : Error         ➔ com 
 let  

com-l = Stre.[tre].com                        -l for “list” 

 com-l : Error         ➔ com-l 
sort.com-l ≠ ‘L’        ➔ ‘list-expected’ 
let 

  (dat-1,…,dat-n)   = data.com-l 
  (‘L’, bod)    = com-l 
  com-i     = Syoe.[yoe].(dat-i, bod)  for i = 1;n 

com-i : Error         ➔ com-i 
(∀ i = 1 ;n) com-i = (tt, (‘boolean’)) ➔ (tt, (”boolean’)) 
true            ➔ (ff, (”boolean’))  
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Type expressions 

The denotations of type expressions refer to the types saved in type environments.  

Sty : TypExp ⟼ TypExpDen 

Sty : TypExp ⟼ State ⟼ TypeE 

 

Sty.[ide] = type-constant.ide  i.e. 

Sty.[ide].sta = 

is-error.sta  error.sta 
let 

((tye, pre), sto) = sta 
 tye.ide = ?  ‘type-constant-undefined’ 

true     tye.ide   

 

The remaining definitions are left to the reader.  

4.7 Two forms of a manual 

A denotational model of a programming language is a starting point not only for the development of 

implementation but also for writing a user manual. Since manuals written in such a way do not exist yet, there 

are no practical experiences in this field. It seems, however rather evident that such manuals should describe 

a language in three following steps in the given order (this is experimentally elaborated in [29]): 

1. the concrete syntax described by equational grammar and illustrated by examples, 

2. the colloquial syntax illustrated by examples of restoring transformations (e.g., as in Sec. 4.5.3), 

3. the semantics of concrete syntax, i.e., the association of concrete programs to their denotations. 

In describing the semantics of a language, one has to choose between two forms of definitions (cf. Sec. 4.7): 

A. definitions that refer to (“call”) earlier defined constructors as in the majority of cases in Sec. 4.3 and 

Sec. 4.4; such definitions will be referred to as algebraic, 

B. definitions that describe constructors explicitly, as in Sec. 4.6; such definitions will be called direct. 

Which of these definitions we choose depends on its addressee. 

For implementators, the algebraic form seems more convenient. The definitions of denotation constructors 

may be written as mutually recursive procedures with procedural parameters (cf. Sec. 4.4.5) and the definition 

of semantics as a mutually recursive set of procedures that call the former procedures. 

In turn, for a language user (a programmer) direct semantics seems more convenient since the meaning of 

each syntactic constructions is describe explicitly and totally in one definition. 

More on a Lingua manual in [29]. 

4.8 Main milestones on the way to language implementation 

Once the designers of a language complete five steps leading to a denotational model of the language (see 

Sec. 3.5), implementors may go into the play.  

The creation of language implementation consists in writing a procedure — or rather a system of mutually 

recursive procedures — that each sequence of characters from colloquial syntax, let it be colloquial-program, 

will elaborate in three steps: 
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1. restoring transformation that transforms colloquial syntax into concrete syntax, 

2. parsing that transforms concrete syntax into abstract syntax, and at the same time checks if the elabo-

rated program is syntactically correct, 

3. interpretation (or compilation) which corresponds to turning abstract syntax into denotations, i.e., into 

executable code.  

The first step performs a relatively simple transformation from colloquial program colloquial-program to 

concrete program concrete-program. Of course, during this transformation, error messages may be raised. 

The second step is performed by a syntax analyzer, also called a parser, that constructs the co-image of 

concrete-program in the abstract syntax. Since the concrete syntax is isomorphic to abstract syntax, this 

transformation is unambiguously defined. From this perspective, the abstract syntax of our program constitutes 

its parsing tree.  

If an attempt to building a parsing tree fails, then the user is informed that the elaborated program contains 

syntactic errors, which means that it does not belong to the language defined by the concrete grammar. Parsing 

procedure should also indicate the place (syntactic context) of the generated error.  

The third step corresponds to program execution, which means that the program is either executed by an 

interpreter or that it is compiled and the compiled code is executed by an implementation platform. In the 

sequel of the book, we shall talk about interpreters, since they are intuitively closer to our denotational model, 

but most remarks about interpreters will equally concern compilers.    

The implementor of a programming language has, therefore, to create three essential software tools: 

1. a syntax analyzer that transforms colloquial syntax into concrete syntax, 

2. a parser of concrete syntax into abstract syntax, 

3. an interpreter (or compiler) of abstract syntax. 

The second and third tasks should be performed by an algorithm whose inputs are the grammar of concrete 

syntax and the definitions of denotation constructors.  

A language should be constructed in such a way that as many as possible of potential errors are detectable 

at the level of syntax analysis since it is much faster than program execution. We try, therefore, to describe 

possibly many language features at the syntactic level, which is done by creating sufficiently many carriers in 

the algebra of denotations. For instance, in a well-constructed language, its parser should detect a syntactic 

error in the expression 

if y > 0 then y+1 else list-type number ee fi 

where else is followed by a type expression rather than by a data expression62. On the other hand, on the 

syntactic level, we are not able to check if a given variable is of a given type. Consequently, this analysis must 

be performed at the level of execution, i.e., of semantics63. 

 
62 In some languages, e.g. in C, such a construction is acceptable.  
63 As a matter of fact type errors may be detected on the level of co called static semantics, where we compute only 

types (in our case bodies) without computing values. Such a solution was applied in the semantics of programming 
language Ada [15] in the framework of VDM methodology (Vienna Development Method) [13]. More about Ada in a 
foot note of Sec. 3.1.  
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5 LINGUA-1 — AN IMPERATIVE LANGUAGE WITHOUT 

PROCEDURES 

Starting from this section, we shall develop successive languages from the Lingua series by extending each 

of them with new mechanisms. Lingua-1 emerges from Lingua-A by adding the mechanisms of type- and 

variable declarations and instructions. Procedures will be discussed in Sec. 6. 

5.1 Denotations 

5.1.1 Denotational domains 

Denotational domains of Lingua-1 correspond to its future syntactic categories:  

1. identifiers, 

2. data expressions, 

3. body expressions, 

4. transfer expressions, 

5. yoke expressions, 

6. type expressions, 

7. instructions, 

8. declarations, 

9. programs. 

Carriers of the future algebra of denotations are the following: 

ide : Identifier    = …                            (5.1.1-1) 

ded  : DatExpDen  = State → ValueE              data-expression denotations 

bed : BodExpDen  = State → BodyE             body-expression denotations 

tra  : TraExpDen  = Transfer                  transfer-expression denotations 

yok : YokExpDen  = Yoke                       yoke-expression denotations 

ted : TypExpDen  = State ⟼ TypeE                    type-expression denotations 

ded : DecDen    = State ⟼ State                      declaration denotations 

ind   : InsDen    = State → State                    instruction denotations 

prd   : ProDen   = State → State                     program denotations 

As was already mentioned earlier, denotations of data expressions are partial functions. Although in Lingua-

1 reachable denotations of data expressions are total function (due to the mechanism of errors), in Lingua-2 

they may be partial since expression may include functional procedures whose executions may enter infinite 

loops. In the case of instructions and programs partiality is always there, since while instructions and recursive 

procedures may generate infinite executions. 
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The first six domains cover applicative denotations and have been discussed in Sec. 4.4. The remaining 

concern imperative denotations and are discussed below. Their elements are built employing three groups of 

constructors: declaration-denotation constructors, instruction-denotation constructors, and program-denota-

tion constructors. We shall start with the last one.  

5.1.2 Conservative denotations 

An imperative denotation dim is said to be conservative if two following conditions are satisfied: 

1. dim is error-state transparent, which means that  

if is-error.sta then dim.sta = sta, 

2. dim does not change bodies of values or pseudovalues assigned to variables, which means that for 

any state sta which does not carry an error and any variable identifier ide declared in that state 

if 

dim.sta is defined and does not carry an error, and 

Sde.[ide].sta   = (dat-1,(bod-1, yok-1)), and 

Sde.[ide].(dim.sta) = (dat-2,(bod-2, yok-2)) 

then 

bod-1 = bod-2.    

As we shall see, all reachable imperative denotations of Lingua-1 and Lingua-2 that do not involve error 

handling will be conservative64. It is, of course, an engineering decision. 

A constructor of imperative denotations is said to be decent if it transforms conservative denotations into 

conservative denotations. In the sequel, we shall make sure that all our constructors are decent. 

5.1.3 Programs 

In all languages of the Lingua family, a program consists of a declaration followed by an instruction. We 

have, therefore, only one constructor of programs:  

create-program : DecDen x InsDen ⟼ ProDen 

create-program.(ded, ind) = ded ● ind  

As we are going to see, both components of a program may be trivial (doing nothing), atomic, or composed. 

Trivial declarations will be allowed in the bodies of imperative procedures, and trivial instructions in the 

bodies of functional procedures65. Of course, a stand-alone program with a trivial declaration and non-trivial 

instruction will generate an error ‘identifier-not-declared’. 

5.1.4 Declarations 

Declarations modify environments. In Lingua-1 we have four types of atomic declarations: 

1. data-variable declarations (Sec. 5.1.4.1), 

2. body-constant declarations (Sec. 5.1.4.2), 

3. type-constant declarations (Sec. 5.1.4.2), 

4. trivial declaration (Sec. 5.1.4.4).  

 
64 This situation will be changed in Lingua-SQL were we introduce instructions which may add a new column to a 

database table or remove a column from such a table (see Sec. 10) 
65 Both these solutions, although in a slightly different form, have been suggested to me by Andrzej Tarlecki.  
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Besides them, we have structured declarations that are built from atomic declarations by sequential compo-

sition.  

We also introduce an operator that will serve to ensure that an identifier declared in a valuation cannot be 

at the same time declared in an environment and vice-versa. Denotationally, such an assumption is not neces-

sary since — as we are going to see — every reference to an identifier will explicitly point to the state com-

ponent where the identifier should be found. From a programmer’s view, however, allowing an identifier to 

point to more than one object, may contribute to errors in programs.  

declared : Identifier ⟼ State ⟼ BooleanE  

declared.ide.((tye, pre), (vat, err)) = 
 err ≠ ‘OK’           ➔ err 

tye.ide = ! or pre.ide = ! or vat.ide = ! ➔ tt 
 true             ➔ ff  

The predicate declared is satisfied for an identifier in a state (which does not carry an error), if this identifier 

has been bound in that state with a value, a type or a procedure. 

5.1.4.1 Declarations of data variables 

As we already know (Sec. 4.4.2) data variables or simply variables are identifiers with values or pseudo-

values assigned to them in valuations. Variable declarations assign pseudo-values to an identifiers, i.e. assign 

types leaving data temporarily undefined. Values are assigned to variables by assignment instructions (Sec. 

5.1.2). 

declare-dat-var : Identifier x TypExpDen ⟼ DecDen 

declare-dat-var.(ide, ted).sta = 
is-error.sta    sta 
declared.ide.sta   sta ◄ ‘variable-declared’ 
let 

(env, (vat, ‘OK’)) = sta 
typ       = ted.sta 

typ : Error     sta  typ 
true       (env, (vat[ide/(Ω, typ)], ‘OK’))  

If a state caries an error, then the declaration does not change the state. Otherwise, if in the current state the 

identifier has been already declared, then an error signal is raised. This means that no identifier can be declared 

twice (redeclared) in a program.  

If our type expression generates an error, then this error is passed to the state. Otherwise, the valuation is 

modified by assigning a pseudo-value (Ω, typ) to ide. As we shall see in the sequel, variable declarations are 

the only imperative constructs that introduce pseudo-values to states. A variable with assigned value or 

pseudo-value (dat, typ) is said to be of type typ.  

An identifier that is bound in the valuation of a state, to a value, or pseudo-value is said to be a declared 

variable in that state.  

In the end, we can finally explain why in the algebra of composites all potential sorts of composites — 

such as the composites of numbers, booleans, words, lists, etc. — were integrated into one sort Composite. 

The cause of that decision can be seen only at the level of the algebra of denotations. If in that algebra we 

would introduce separate carriers of data-expression denotations for numbers, booleans, words, lists, etc., then 

we would need to add a different variable constructor for each of these carriers. Consequently, at the level of 

syntax, we would have to somehow “label” variables with sorts. Technically this is possible, but would be 

rather unpractical and probably has never been applied in modern programming languages66.  As a 

 
66 Except for some very early languages of the decade of 1950.  
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consequence, since we decided to put all data-expression denotations into one sort, there was no reason to 

assume different sorts in the algebra of composites. 

5.1.4.2 Declarations of body constants 

Body constants are identifiers with bodies assigned to them in type environments. We call them constants 

rather than variables since a body, once assigned to an identifier remains unchanged during the whole execu-

tion of a program. In the case of variables, their bodies do not change, but their yokes and values may be 

modified.  

The following constructor creates the denotation of a body constant declaration: 

declare-bod-con : Identifier x BodExpDen ⟼ DecDen 

declare-bod-con.(ide, bed).sta = 
is-error.sta    sta 
declared.ide.sta   sta ◄ ‘identifier-not-free’ 

let 
bod     = bed.sta 
((tye, pre), sto) = sta  

bod : Error     sta  bod 
true       ((tye[ide/bod], pre), sto) 

As we see, body declarations modify only type environments, and, of course, may generate an error message.  

An identifier that is bound in the type environment of a state to a body is said to be a declared body constant 

in that state.  

5.1.4.3 Declarations of type constants 

Type constants are identifiers with types assigned to them in type environments. Similarly to body constants, 

they are also called constants since a type once assigned to a constant remains unchanged during the whole 

execution of a program. In the case of variables, their yokes and values may be modified.  

The following constructor creates the denotation of a type constant declaration: 

declare-typ-con : Identifier x TypExpDen ⟼ DecDen 

declare-typ-con.(ide, ted).sta = 
is-error.sta    sta 
declared.ide.sta   sta ◄ ‘identifier-not-free’ 

let 
typ     = ted.sta 
((tye, pre), sto) = sta  

typ : Error     sta  typ 
true       ((tye[ide/typ], pre), sto) 

An identifier that is bound in the type environment of a state to a type is said to be a declared type constant in 

that state.  

5.1.4.4 Trivial declaration 

Trivial declaration transforms a state into itself. We shall need it as an option in the bodies of imperative 

procedures (Sec. 6.3).  

create-trivial-dec.().sta = sta 

5.1.4.5 Structured declarations 

A structured declaration is a sequential composition of atomic declarations. The only constructor of structured 

declarations is, therefore, the following: 

sequence-dec.(ded-1, ded-2) = ded-1 ● ded-2 
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5.1.5 Instructions 

5.1.5.1 Sorts of instructions 

Instructions modify stores. Similarly to declarations, they may be atomic or structured. In Lingua-1 we have 

three sorts of atomic instructions: 

1. assignment instructions (Sec. 5.1.5.2), 

2. yoke-replacement instructions (Sec. 5.1.5.3), 

3. trivial instruction (Sec. 5.1.5.4). 

Structured instructions are built from atomic instructions using four constructors that correspond to: 

1. sequential composition, 

2. if-then-else-fi instructions, 

3. while-do-od instructions, 

4. error-handling instructions. 

5.1.5.2 Assignment instruction 

Now we are ready to define a constructor corresponding to assignment instructions which are fundamental for 

the imperative part of Lingua. 

assign : Identifier x DatExpDen ⟼ InsDen 

assign.(ide, ded).sta =  
is-error.sta      ➔ sta 
let 

((tye, pre), (vat, ‘OK’)) = sta 
vat.ide = ?      ➔ sta ◄ ‘identifier-not-declared’ 
ded.sta = ?     ➔ ?                       an infinite execution 
ded.sta : Error    ➔ sta ◄ ded.sta  
let 

(dat-f, (bod-f, yok-f))  = vat.ide                  f – former value 
(dat-n, (bod-n, yok-n)) = ded.sta                   n – new value 

 com        = yok-f.(dat-n, bod-n) 
com : Error     ➔ sta ◄ com 
bod-n ≠ bod-f    ➔ sta ◄ ‘inconsistent-bodies’ 
com ≠ (tt, (‘boolean’) ) ➔ sta ◄ ‘yoke-not-satisfied’ 
let 

val-n = (dat-n, (bod-f, yok-f))  
true        ➔ ((tye, pre), (vat[ide/val-n], ‘OK’))  

Assignment instruction assigns a new value to a data variable in a state. This instruction generates an error in 

three following cases: 

1. if the variable has not been declared (but it does not need to be initialized), 

2. if the body of variable’s type does not coincide with the body of the assigned value, 

3. if the assigned value does not satisfy the yoke assigned to the variable. 

Note that the yoke of the variable yok-f remains unchanged independently of the yok-n of the new value. 

However, to prove that the new value satisfies the yoke of the variable it is enough to prove that yok-n implies 

yok-f.  

As we also see, assignment cannot change variable’s type. This is, of course, an engineering decision. It 

has been taken to assure that every modification of variable’s yoke must be explicit in a program. In Lingua, 

to make such a modification, we have to use a yoke-replacement instruction  described in Sec. 5.1.5.3.  
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5.1.5.3 Yoke-replacement instruction 

Yoke replacement is similar to assignment with the difference that this time we do not change a composite 

but yoke. Similarly to assignment instructions also yoke-replacement instructions belong to the category of 

atomic instructions.  

replace-yo : Identifier x Yoke ⟼ InsDen 

replace-yo.(ide, yok-n).sta =        n – new  
is-error.sta        ➔ sta 
let 

(env, (vat, ‘OK’)) = sta 
vat.ide = ?        ➔ ‘identifier-not-declared’ 
let 

((com-f, yok-f)  = vat.ide        f – former  
yok-n.com-f ≠ (tt, (‘boolean’)) ➔ ‘yoke-not-satisfied’ 
let 

val-n = (com-f, yok-n)  
true          ➔ (env, vat[ide/val-n], ‘OK’)   

New value has an old composite and a new yoke. The latter must be satisfied by the old composite, since 

otherwise (com-f, yok-n) would not be a value. This instruction has been introduced mainly for the sake of 

Lingua-SQL (Sec. 10.9.6)67. 

It is worth noticing in this place that in the algebra of types, we have a similar constructor ty-replace-yo, 

which, however, is a constructor of types rather than of instruction denotations. We need both of them. The 

ty-replace-yo is required to build types statically in declarations, whereas replace-yo is necessary to change 

the type of variables dynamically in instruction.  

5.1.5.4 Trivial instruction 

Trivial instruction is an identity transformation of a state into itself. As we are going to see, it will be useful 

in defining the declarations of functional procedures (Sec. 6.5). The denotation of this instruction is created 

by the following constructor: 

create-trivial-ins : ⟼ InsDen 

create-trivial-ins.().sta = sta 

5.1.5.5 Structured instructions 

Structured instructions are built from atomic instructions using four constructors mentioned in Sec.5.1.5.1. In 

the present section, we shall define these constructors. 

The simplest constructor of structured instructions corresponds to their sequential composition, and is de-

fined as follows: 

sequence-ins : InsDen x InsDen ⟼ InsDen 

sequence-ins.(ind-1,ind-2) = ind-1 ● ind-2 

Sequentially composed instructions are executed one after another. Conditional composition is defined as 

follows: 

if : DatExpDen x InsDen x InsDen ⟼ InsDen 

if.(ded, ind-1, ind-2).sta = 
is-error.sta    sta 
ded.sta = ?    ? 

 
67 This very general form of yoke-replacement has been chosen for the sake of simplicity. In real situations one should 

think about more specific replacements, as e.g. by conjunctively adding a new yoke to the former. 
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ded.sta : Error   sta ◄ ded.sta 
let  

(dat, (bod, yok)) = ded.sta  
bod ≠ (‘boolean’)  sta ◄ ‘boolean-expected’ 
dat = tt      ind-1.sta 
true       ind-2.sta 

It is to be emphasised that due to while loops (see below) the execution of both component instructions may 

be infinite, which means that the states ind-1.sta or ind-2.sta may be undefined. If dat = tt and ind-1.sta is 

undefined then the terminal state of the conditional instruction is undefined as well, and in the opposite case 

the final state is undefined if ind-2.sta is undefined. 

while : DatExpDen x InsDen ⟼ InsDen 

while.(ded, ind).sta =  
is-error.sta    sta 
ded.sta = ?    ? 
ded.sta : Error   sta ◄ ded.sta 
let 

(dat, (bod, yok)) = ded.sta  
bod ≠ (‘boolean’)  sta ◄ ‘boolean-expected’ 
dat = ff      sta 
true       (ind ● [while.(ded, ind)]).sta 

In this definition we have to do with a fixed-point equation. Notice however that the unique (least) solution of 

this equation is not while constructor, but the effect of its application to its arguments, i.e. while.(ded, ind).  

Due to this construction, the denotations of instructions can be partial functions. In the sequel, where im-

perative and functional procedures are introduced, the partiality of while.(ded, ind) may take place in three 

different situations: 

1. the boolean expression corresponding to ded includes a functional procedure, the call of which gen-

erates an infinite execution, 

2. the instruction represented by ind generates an infinite execution, 

3. the “main loop” runs infinitely.  

Comment 5.1.5.5-1 In the definition of while we have to do with a fixed-point equation in InsDen, 
which is a CPO of partial functions (Sec. 2.6). For any pair (ded, ind) the solution of our fixed-point 
equation is a state-to-state function: 

while.(ded, ind) : State → State 

Of course, for every such a pair (ded, ind) we have to do with a different equation. To be sure that 
solutions of such equations exist, we have to prove that the right-hand sides of such equations are 
continuous in the CPO of partial functions State → State. To do that, let us introduce the following 
notations: 

NotOK   = {(sta, sta) | (1) satisfied} 

ExpEr    = {(sta, sta ded.sta) | (3) not (1) and (2)} 

NotBoo = {(sta, sta ’boolean-expected’) | (4) not (1) and (2) and (3)} 

FF          = {(sta, sta) |  (5) not (1), (2), (3) and (4)} 

TT          = {(sta, sta) |  not (1), (2), (3), (4) and (5)} 

Now, our definition maybe written as a fixed-point equation: 

X = NotOK | ExpEr | NotBoo | FF | TT●ind●X 

Since the operators | and ● are continuous, the least solution of that equation exists, and since the 
coefficients of that equations have mutually disjoint domains, from Theorem 2.6-1 we may conclude 
that its solution is a function and has the form: 

X = (TT● Din)* ● (NotOK | ExpEr | NotBoo | FF) 
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The last structured constructor concerns the error-handling mechanism. It allows building an error-handling 

mechanism into programs, a mechanism that is activated whenever a particular error message is generated.  

if-error : DatExpDen x InsDen → InsDen 

if-error.(ded, ind).sta = 
 let  

(env, (vat, err)) = sta 
 err = ‘OK’   ➔ sta  

let 
sta-1 = (env, (vat, ‘OK’))   

 ded.sta-1 = ?  ➔ ? 
 let 
  val = ded.sta-1 
 val : Error   ➔  sta ◄ val © ‘error-handling-not-executed’  

let 
  (dat, (bod, yok)) = val  

bod ≠ (‘word’) ➔ sta ◄ ‘word-expected’ © ‘error-handling-not-executed’ 
 dat ≠ err   ➔ sta ◄ dat © ‘error-handling-not-executed’ 
 ind.sta-1 = ?  ➔ ? 
 let 
  sta-2 = ind.sta-1 
 is-error.sta-2  ➔ sta ◄ error.sta-2 ©‘error-handling-not-executed’ 
 true     ➔ sta-2  

If the input-state does not carry an error, then it becomes the output state, since there is no cause to handle an 

error.  

In the opposite case, a temporary state sta-1 is created by the removal of the error from sta. In this state, 

we compute the value of the expression ded whose value should be the handled error. If this computation 

does not terminate, then the execution of the whole instruction does not terminate either. Otherwise, if the 

result of that computation is an error or a value that does not carry a word, then an appropriate error message 

is generated together with the additional massage ‘error-handling-not-executed’.  

In the opposite case, if the word carried by val — the error to be handled — is different from the initial 

error, then the output state is loaded with an appropriate message.  

In the opposite case, the error-handling instruction ins is executed in the temporary state sta-1. If during 

this execution, an error is generated, then it is signalized together with the information ‘error-handling-not-
executed’.  

In the opposite case the “handled” state becomes the output state. 

As we see, the expression that appears in an error-handling instruction must evaluate to a word value. If 

that word coincides with the current error message, then the “internal” instruction is executed. 

It is to be stressed that the above constructor should be regarded only as an example showing that error-

handling mechanisms may be described in our model. In no way, it should be considered as a pattern for error 

handling. Other examples of such mechanisms are shown in sections 6.3.2 and 10.9.6.4. 

5.2 Syntax 

Since Lingua-1 is being built as an extension of Lingua-A, we shall describe only these elements of the syntax 

of Lingua-1 that do not appear in Lingua-A. 

5.2.1 Abstract syntax 

Programs 
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prg : ProgramA =  
create-program (DeclarationA , InstructionA) 

Declarations 

dec : DeclarationA =  
 declare-dat-var (Identifier , TypExpA)  | 

 declare-bod-con (Identifier , BodExpA)  | 

declare-typ-con (Identifier , TypExpA)  | 

 create-trivial-dec.()        | 

 sequence-dec.(DeclarationA, DeclarationA) 

Instructions 

ins : InstructionA =  
assign (Identifier , DatExpA)       | 

replace-yo (Identifier, YokExpA)     | 

create-trivial-ins ()        | 

if (DatExpA , InstructionA , InstructionA)  | 

if-error (DatExpA , InstructionA)    | 

while (DatExpA , InstructionA)      | 

sequence-ins (InstructionA , InstructionA) 

5.2.2 Concrete syntax 

Programs 

prg : Program = 
(Declaration ; Instruction) 

Declarations 

dec : Declaration = 
let Identifier be TypExp tel    | 

set-body Identifier as BodExp tes  | 

set-type Identifier as TypExp tes  | 

(Declaration ; Declaration)     | 
skip-d 

Instructions 

ins : Instruction =  
Identifier := DatExp             | 

yoke Identifier:= YokExp ekoy       | 

skip-i                | 

if DatExp then Instruction else Instruction fi  | 

if-error DatExp then Instruction fi     | 

while DatExp do Instruction od        | 

(Instruction ; Instruction) 

5.2.3 Colloquial syntax 

Here are some examples of possible colloquialisms. First concerns sequential composition of: 

1. a declaration with an instruction (to create a program), 

2. two declarations, 

3. two instructions 
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In all these cases we can skip parentheses.  

Second, in type declarations and variable declarations with trivial yokes true, we can skip the yoke part 

of the expression. For instance instead of writing 

set-type list-of-names  

as  

type  

list string ee 

with true   

ee  

tes 

we may write 

set-type list-of-names  

as  

type  

list string ee 

tes 

and analogously for variable declarations. 

Third, variables-declarations of the same type may be grouped into one declaration with many variables, 

e.g. instead of writing 

let x be number tel;  

let y be number tel;  

let z be number tel 

we write 

let x, y, z be number tel 

and analogously for body and type declarations. 

 

Comment 5.2.2-1 In building concrete syntax for Lingua-1, I have applied some notational conven-
tions known to me from the “old times”, which in my opinion improve the clarity of programs and thus 
contribute to a less number of errors made by programmers. They are the following: 

1. For an assignment, I use „:=” rather than an equality „=” as in some other languages. The 

equality symbol is reserved for a comparison predicate.  

2. I use closing parentheses like e.g., fi for if and od for do since my experience shows that 

this contributes to better clarity of programs. 

3. Hierarchical carriage returns and spaces help in exposing the structure of programs, however 
using them as parentheses (as, e.g., in Phyton) may be error-prone resulting from an errone-
ous use of the Del-key. As a mathematician, I also cannot accept the fact that a hidden for-
matting-sign is an element of syntax. It is, however, convenient to use carriage returns and 
indentations freely, i.e., without interfering with the meanings of programs. In Lingua, they 
are removed by the restoring transformation. 

5.2.4 An example of a simple program 

Here is an example of a simple program that creates a record. Under each part of that program, I give an 

explanation of its meaning.   

set-body register_body as  

array number ee 

tes 
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Identifier register_body is declared as an array-body constant with body (‘A’, (‘number’)). 

 

set-body employee_body as  

record 

ch_name, fa_name as string, 

birth_year as number, 

awards as register_body 

ee 

tes;  

Identifier employee_body is declared as a body constant with record body  

(‘R’, [‘ch_name’ / (‘word’), ‘fa_name’/(‘word’), ‘birth_year’/(‘number’), ‘awards’/(‘A’, (‘number’))]) 

Having declared body constants we can declare corresponding type constants. 

set-type register_type as 

 body register_body 

  with all-of-arr value < 2010 ee 

tes 

Identifier register_type has been declared as a type constant with a body assigned to register_body 

and a yoke which requires that each element of the array is less than 2010.  

set-type employee_type  as  

body employee_body  

with (record value at birth_year ee < 2000)ee   

tes  

Identifier employee_type is declared analogously as the former. Having declared types we can declare 

variables of these types 

let salesman be employee_type ee 

let awards_Smith be  register_type ee 

Now, we can initialize our variables 

awards_Smith := array [1995, 1999, 2007] 

 

salesman :=  

record 

ch-name   := ‘John’ 

fa-name   := ‘Smith’ 

birth-year  := 1968 

awards    := awards_Smith 

ee 

5.3 Semantics 

The definition of Lingua-1 semantics consists of the definition of the semantics of Lingua-A (Sec. 4.6) ex-

tended by definitional clauses for the imperative part of the language: 

Sde : Declaration  ⟼ DecDen 

Sin  : Instruction ⟼ InsDen 

Spr  : Program   ⟼ ProDen 

The definitions of these semantic functions are given in an algebraic form. 
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Declarations  

Sde : Declaration ⟼ DecDen   i.e. 

Sde : Declaration ⟼ State ⟼ State 

 

Sde.[let ide be tex]   = data-variable.(Sid.[ide], Sty.[tex]) 

Sde.[set ide as tex]  = declare-typ-con.(Sid.[ide], Sty.[tex]) 

Sde.skip-d      = create-trivial-dec.() 

Sde.[(dec-1; dec-2)] = sequence-vde.(Sde.[dec-1], Sde.[dec-2]) 

 

Instructions 

Sin : Instruction ⟼ InsDen     i.e. 

Sin : Instruction ⟼ State → State 

 

Sin.[ide := dae]            = assign.(Sid.[ide], Sw.[dae]) 

Sin.[if dae then ins-1 else ins-2 fi] = if.(Sw.[dae], Si.[ins-1], Si.[ins-2]) 

Sin.[if-error dae then ins-1 fi]   = if-error.(Sw.[dae], Si.[ins-1]) 

Sin.[while dae do ins od]      = while.(Sw.[dae], Si.[ins]) 

Sin.[(ins-1;ins-2)]          = sequence-ins.(Si.[ins-1], Si.[ins-2]) 

 

Programs 

Spr : Program ⟼ ProDen     i.e. 

Spr : Program ⟼ State → State 

Spr.[(dec ; ins)] = create-program.(Sde.[dec], Sin.[ins]) 
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6 LINGUA-2 — PROCEDURES 

6.1 An introduction to a model of procedures 

6.1.1 Procedures from a historical perspective 

The concept of a procedure appeared in programming languages in the decade of 1950. Initially, procedures 

were just lists of instructions communicating with a hosting program through global variables. Later, to in-

crease the universality of procedures, they were equipped with parameter-passing mechanisms and with a 

mechanism of local-variable declarations. Procedures understood in this way are named imperative proce-

dures, and correspond to state-to-state functions. Consequently, the calls of such procedures belong to the 

category of instructions. 

Another type of procedures was introduced under the name of functional procedures or just functions. The 

calls of these procedures belong to the category of expressions since they return values rather than states. 

The most popular high-level language of the decades 1950/1960 was Fortran. In this language, procedures 

could call other procedures but not themselves. Procedures that may call themselves were introduced in Algol 

60 under the name of recursive procedures. The creators of Algol 60 went even one step further, allowing 

procedures to take other procedures ― and even themselves (!) ― as parameters (cf. Sec. 3.1). The self-

applicability of procedures as parameters was, however, abandoned rather quickly, and did not appear later in 

programming languages. On the other hand, recursion turned out to be an advantageous vehicle and today is 

present in many languages. In some of them, procedures may take other procedures as parameters, but not 

themselves (see Sec. 6.6). 

It is worth mentioning in this place that at the turn of decades 1950 and 1960, Polish scientists have devel-

oped and implemented a programming language SAKO ― System Automatycznego Kodowania (A System 

of Automatic Coding) ― that was similar to Fortran. Its compiler was implemented on a Polish computer 

XYZ constructed in Zakład Aparatów Matematycznych PAN (Department of Mathematical Apparatuses ) ― 

research unite of Institute of Mathematics of Polish Academy of Sciences. That was the first computer that I 

learned to program as a student. Its first version was equipped with an operational memory of 1024 bytes, i.e., 

1 KB (disks were not known yet) and was later expanded by a magnetic drum with — as far as I can remember 

— 5 KB.   

At that time, programmers were instructed that to “intellectually” control the behavior of a program, the 

latter should not exceed one paper-sheet of A4 size. In the case of larger programs, that principle was imple-

mented by writing procedures that were calling other procedures. That style was later called structured pro-

gramming (cf. Sec. 3.1).  

Structured programming was introduced not only to help programmers in a better understanding of their 

programs but also to prove program-correctness by induction based on program structure. So far, however, 

this technique is rather far for a full practical realization (cf. Sec. 7.1). 

6.1.2 Procedures versus structured programming 

In programming languages with procedures, procedures may call other procedures or even themselves. This 

mechanism allows building programs in the following structural way: 

1. The main program calls one main procedure, which calls subprocedures of the first level. 
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2. Subprocedures of the first level call subprocedures of the second level. 

3. … 

The number of successive levels is theoretically arbitrary.   

In the simplest case — which appears most frequently — procedures constitute a tree-like structure (Fig. 

6.1-1). The main procedure MP calls subprocedures SP1 and SP2 the first calls in turn SP3, SP4, and SP5.  

 

 

Fig. 6.1-1 A tree of procedures without recursion 

It may also be the case that a procedure calls a higher-level procedure or itself. Such a situation is illustrated 

in Fig. 6.1-2.  

 

 

Fig. 6.1-2 A graph of procedures with recursion 

If in the body of a procedure an interpreter encounters a call of this procedure, then basically two types of 

reactions are possible: 

• an error message ‘procedure-undeclared’ is generated, 

• a copy of the called procedure is activated. 

The second case, which is today rather common in programming languages, is known as recursive call of a 

procedure. If a procedure calls itself directly, i.e., in its own body, then we have to do with a simple recursion. 

If, however, SP1 calls SP3 and SP3 calls SP1, then we have to do with mutual recursion. Of course, a cycle 

of procedures calling one another may have more than just two elements.  

6.1.3 Imperative procedures in a denotational framework 

Although recursion is today a rather common standard in high-level programming languages, its technical 

details may differ from one language to another. For the sake of our investigations, we assume a certain more-

or-less universal model chosen in such a way that it leads to relatively simple correction-proof-rules.  

Procedures in our model split into two categories: imperative procedures or just procedures and functional 

procedures or just functions. The calls of the former belong to the category of instructions, the calls of the 

latter ― to the category of expressions. Let us concentrate first on imperative procedures. Functional proce-

dures will be discussed in Sec. 6.5. 
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Imperative procedures may be seen as named instructions with additional mechanisms that allow to use 

them repeatedly in many different contexts: 

• they may be saved in procedure-environments, 

• they may use local variables, types, and procedures that are not visible outside of a procedure-body, 

• they may receive lists of values that are used to initialize local variables; this mechanism is known as 

called-by-value actual parameters or as actual value-parameters,  

• they may receive lists of variables known as called-by-reference actual parameters or as actual refer-

ence-parameters; the initial values of these parameters are passed to procedures, and their terminal 

values are exported back to the hosting program. 

Besides all these operational features of procedures, there is one essential difference between procedures and 

instructions ― procedures have no syntactic counterparts. In commonly known programming languages, pro-

cedures do not appear as syntactic objects, and even more — they do not appear as independent concepts at 

all. The authors of manuals talk about procedure declarations and procedure calls but not about procedures as 

such. This awkward situation is caused by the fact that manuals are usually concentrated on syntax68.  

However, talking about bodies, declarations, and calls of “beings” that have not been defined not only 

conflicts with mathematical good-practice but may also lead to a poor understanding of language mechanisms.  

In Lingua-2 procedures constitute a separate domain which, however, is not a carrier of our algebra of 

denotations. It is why procedures have no syntactic counterparts. Consequently, we talk about procedures “as 

such”, rather than about procedure denotations. 

In order to include imperative procedures in our denotational model, we define three new categories of 

denotational beings: 

imperative procedures — total functions that given parameters re-

turn partial functions that modify stores, 

the denotations of imp.-procedure declarations — total functions that modify states by as-

signing a (just declared) procedure to an 

identifier in the environment, 

the denotations of imp.-procedure calls — partial functions that modify states by ex-

ecuting a procedure that modifies the store 

of the input state of the call. 

To start the extension of our model with imperative procedures we define two new domains (of which only 

the second will become a carrier of our algebra of denotations): 

ipr  : ImpPro = AcPaDe  x AcPaDe ⟼ Store → Store             imperative procedures 

apd : AcPaDe = Identifierc*                     list of actual-parameter denotations 

To avoid a self-applicability of procedures we define them as functions which given actual-parameter deno-

tations return store-to-store functions.  

As we are going to see a little later, declarations of imperative procedures will take two lists of formal 

parameters called respectively formal value-parameters, and formal reference-parameters. The domain of 

formal-parameter denotations is defined as follows69:  

 
68 From a denotational perspective this situation is, however, not as awkward as one could expect. Notice that other 

storable objects such as values and types do not have syntactic counterparts either. At the level of syntax they are 
represented by expressions. Analogously to that, procedures are represented by calls.  

69 Note that here we talk about formal-parameter denotations ― rather than just about formal parameters ― which 
means that they will have their syntactic counterparts. These counterparts will be tuples of pairs consisting of an 
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fpd : FoPaDe = (Identifier x TypExpDen)c*                list of formal-parameter denotations 

Formal-parameters denotations include type-expression denotations since, in the declarations of procedures, 

we indicate the types of their future actual-parameters.  

In the sequel, we shall require that formal parameters of a procedure do not include repetition. For that 

sake, we define the following predicate: 

repetitions-in-for-par : ((ide-1, ted-1),…,(ide-n, ted-n)) = 
 (∃i,j)(ide-i = ide-j) ➔ tt 
 true      ➔ ff 

The domain of declaration denotations remains unchanged: 

ded : DecDen = State ⟼ State  

 we shall only enrich the list of its constructors, and consequently its reachable subdomain. 

For the simplicity of our model, and especially for the simplicity of program construction rules, we have 

assumed that actual parameters of procedures must be identifiers rather than arbitrary expressions. As we shall 

see later, expressions will include functional-procedure calls, which in turn may contain calls of imperative 

procedures, and which, themselves, may be recursive. If actual parameters could be arbitrary expressions, then 

one could write a procedure that calls itself recursively when calculating its own parameters. Denotationally, 

this is (probably?) feasible, but a corresponding program-construction rule would become pretty complicated. 

More on that issue in Sec. 6.5.1 

After having defined domains for procedures, we can proceed to the definitions of their constructors. We 

assume that all constructors defined in Lingua-1 are available in Lingua-2. 

According to our general rule about the series of Lingua languages (Sec. 3.3), Lingua-2 emerges from 

Lingua-1 by adding new carriers and new constructors to the algebra of denotations. Additionally, the carrier 

of instruction denotations gets new reachable elements that correspond to procedure calls, and the carrier of 

declarations gets new reachable elements that correspond to procedure declarations70. 

At the end of this section, notice that in the definition of ImpPro, we do not have an illegal fixed-point 

recursion since procedures do not take states as arguments but only stores71. It is why stores have been intro-

duced as a separate component of a state. If we had assumed the equation 

ImpPro  = AcPaDe x AcPaDe ⟼ State → State   

then together with the equations 

State  = (TypEnv x ProEnv) x Store 

ProEnv = Identifier ⟹ ImpPro 

we would have an illegal fixed-point equation since the operators „⟼” and  „→” are not continuous (Sec. 

2.7). As we are going to see, our model of procedures allows recursion but does not allow procedures that take 

themselves as parameters. Procedures that can take other procedures as parameters — but not themselves — 

are discussed in Sec. 6.6 

6.2 Communication between imperative procedures and programs 

In the descriptions of procedural mechanisms, we shall use some concepts referring to the fact that procedures 

are created when they are declared and are executed when they are called. In respect to that, we shall talk 

 
identifier and a type expression. Such tuples will be called formal parameters. A similar situation takes place for actual 
parameters, although now parameter denotations are identical with their syntax and are just identifiers.  

70 The carriers themselves do not change since they remain the State → State domain. The same will concern expres-
sion denotations when we introduce functional-procedure calls. 

71 That solution has been introduced by Andrzej Tarlecki and myself in 1983 (see [33]).  
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about declaration-time states and call-time states, respectively72. Traditionally by a procedure body, we shall 

mean a program that is executed when a procedure is called. In turn, by a procedure content, we shall mean a 

procedure body equipped with two parameter-passing mechanisms:  

1. passing the values of actual parameters to formal parameters before the execution of the body, 

2. returning the values of formal reference parameters to formal parameters after the execution of the 

body.  

As I have already announced, in Lingua-2, there will be no global variables in procedures. It is not a mathe-

matical necessity but an engineering decision. The intention is that the head of a procedure-call describes 

explicitly and completely the communication mechanisms between a procedure and the hosting program. That 

solution may seem restrictive but ― in my opinion ― guarantees a better understanding of program function-

ality by programmers and also simplifies program-construction rulers.  

6.2.1 How does it work?  

An execution of a procedure call may be symbolically split into five stages illustrated in Fig. 6.2-1. (technical 

details in Sec. 6.3). 

 

Fig. 6.2-1 The execution of a procedure content 

1. Getting the called procedure from the environment. We check if the procedure identifier (proce-

dure’s name) is assigned in the global initial-environment to an imperative procedure.  

2. Checking the compatibility of actual parameters with formal parameters. The initial global state 

consists of: 

a. an initial global environment env-ig, 

b. an initial global store sto-ig = (vat-ig, err) 

If err ≠ ‘OK’, then the initial global state is returned by the procedure call, i.e., it becomes the 

terminal global state. In the opposite case, actual parameters are checked for compatibility with 

formal parameters, and their values are passed to the local initial state. 

3. The creation of an initial local state ― that state consists of: 

 
72 These ideas, similarly to a few others, have been borrowed from M. Gordon [53].  
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a. initial local environment env-il created from the declaration-time environment by nesting in it 

the called procedure; this nesting is necessary to enable recursive calls (Sec. 6.3.2), 

b. initial local valuation vat-il carrying only formal parameters with assigned values of corre-

sponding actual parameters; to get these values, we refer to initial global valuation val-ig. 

4. The transformation of the local initial state by executing the procedure body (a program). If this 

execution terminates, then the local terminal state consists of: 

a. terminal local environment env-tl, 

b. terminal local store sto-tl = (val-tl, err-tl). 

If err-tl ≠ ‘OK’, then a global terminal state is created from the initial global state by loading to it 

err-tl. Notice that in this case, the terminal local-environment and terminal local-store are “aban-

doned”. Otherwise, the terminal global state is created. 

5. The  creation of the terminal global state ― that state consists of: 

a. initial global environment env-ig; notice that terminal local environment env-tl is “aban-

doned”, 

b. terminal global store sto-tg created from initial global store sto-ig by passing to it the values 

of formal referential parameters (stored in sto-tl) and assigning them to the corresponding ac-

tual referential parameters.  

Notice that the initial local environment “inherits” all types and procedures from the declaration-time envi-

ronment. Procedure body may create its private local types, variables, and procedures, but after the completion 

of the call, they cease to exist since the hosting program continues its execution with the initial global envi-

ronment.  

It is to be stressed that the procedure body may access only that part of the environment, which was created 

before the procedure declaration. 

Of a similar character is the local valuation that is created only for procedure-execution time; however, in 

this case, the values or reference-parameters stored in it are eventually returned to the terminal global valua-

tion.  

Summarising visibility rules concerning procedure call: 

1. the only variables visible during the execution of a procedure-body are formal parameters plus variables 

local to the body (declared in it), 

2. the only types and procedures visible in procedure-body are declaration-time types and procedures plus 

locally declared ones, 

3. variables, types, and procedures declared in procedure-body are not visible outside the procedure call. 

All these choices are not mathematical necessities but pragmatic engineering decisions dictated by the inten-

tion of making our model relatively simple. This decision should contribute to the simplicity of proof rules 

and a better understanding of the program’s behavior by language users. 

6.2.2 Constructors of parameter denotations 

Since procedure constructors will take lists of parameters as arguments, we have to define constructors of the 

denotations of parameter lists in the first place. Lists of actual-parameter denotations are tuples of identifiers 

(possibly empty), and therefore they can be built by three following constructors: 

 

create-empty-act-par-den : ⟼ AcPaDe 

create-empty-act-par-den.() = () 

 



Andrzej Blikle (in cooperation with Piotr Chrząstowski-Wachtel), A Denotational Engineering of Programming Languages     144 

 

create-single-act-par-den : Identifier ⟼ AcPaDe 

create-single-act-par-den.ide = (ide) 

 

add-act-par-den : AcPaDe x Identifier ⟼ AcPaDe 

add-act-par-den.(apd, ide) = apd ₵ (ide) 

 

where ₵ denotes a Cartesian concatenation of tuples (see Sec. 2.1.4), and (ide) denotes a one-element tuple 

that consists of ide. Analogously we define constructors of the lists of formal-parameter denotations: 

 

create-empty-for-par-den : ⟼ FoPaDe 

create-empty-for-par-den.() = () 

 

create-single-for-par-den : Identifier x TypExpDen ⟼ FoPaDe 

create-single-for-par-den.(ide, ted) = ((ide, ted)) 

 

add-for-par-den : FoPaDe x (Identifier x TypExpDen) ⟼ FoPaDe 

add-for-par-den.(fpd, (ide, ted)) = fpd ₵ (ide, ted) 

 

At the end of this section, a technical explanation seems necessary. It concerns the definitions of both domains 

AcPaDe and FoPaDe, but we shall discuss only the first of them since the argument for the second is anal-

ogous.  

The issue to be discussed concerns an observation that to generate AcPaDe, we do not need the constructor 

create-single-act-par-den. Instead of using it we can use the first and the third constructor in assuming that 

()  ₵ apd = apd 

and therefore 

()  ₵ (ide) = (ide) 

Such a solution, however, leads to a problem, if at the level of concrete syntax, we want to explicitly mark an 

empty list, e.g., by a keyword empty-ap. In that case, we cannot generate a one-identifier list but necessarily 

a two-element list, e.g. (empty-ap, size). Another solution could be that in concrete syntax, we replace 

empty-ap by empty word ε, but in that case, we violate our principle that all decisions of a programmer 

must be explicit in the program’s syntax. 

6.2.3 The compatibility of parameter-lists 

When an imperative procedure is called its formal parameters receive the values (typed data) of actual param-

eters, and in this way a local valuation is created. However, in order to make such a parameter-passing possi-

ble, the list of actual-parameter denotations of a procedure call must be compatible with the lists of formal-

parameter denotations in the corresponding procedure declaration both as to their numbers and types. And of 

course, the identifiers which are used as actual parameters must be declared as data variables. In order to 

formalize these requirements we define two functions.  

statically-compatible : FoPaDe x FoPaDe x AcPaDe x AcPaDe ⟼ Error | {‘OK’} 

statically-compatible.(fpd-v, fpd-r, apd-v, apd-r) = 
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let (for n, m, k, p ≥ 0) 

fpd-v  = ((ide-fv.i, ted-fv.i) | i=1;k)              list of formal value-parameter denotations 
fpd-r   = ((ide-fr.i, ted-fr.i) | i=1;n)              list of formal reference-parameter denotations 

apd-v = (ide-av.i | i=1;p)                list of actual value-parameter denotations 
apd-r  = (ide-ar.i | i=1;m)            list of actual reference-parameters denotations 
are-repetitions.[(ide-fr.i | i=1;n) ₵  
      (ide-fv.i | i=1;k)]  ➔ ‘formal-par-repetitions’73 
are-repetitions.apd-r   ➔ ‘actual-reference-par-repetitions’ 
n ≠ m or k ≠ p      ➔ ‘incompatible-numbers-of-parameters’ 

 true         ➔ ‘OK’ 

In other words, lists of formal and actual parameter denotations of a procedure call are statically compatible 

if: 

1. no formal parameter appears twice on a combined list of both sorts (value- and reference) parameters; 

a similar property of actual value-parameters is, of course, not required, 

2. no actual reference parameter appears twice on the list of actual reference parameters, 

3. the mutually corresponding lists of formal and actual parameter denotations are of the same lengths.  

The defined property is called static since it can be checked at compilation-time, i.e., before program execu-

tion. Notice that “statically” does not mean “syntactically”! Static compatibility cannot be described by a 

grammar.  

The next compatibility function refers to valuations and type environments and therefore is dynamic since 

its execution is possible only during the execution of a program. Also here we compare the denotations of 

formal parameters with the denotations of actual parameters. 

 

dynamically-compatible : FoPaDe x FoPaDe x AcPaDe x AcPaDe ⟼  

  TypEnv x Valuation ⟼  Error | {‘OK’} 

dynamically-compatible.(fpd-v, fpd-r, apd-v, apd-r).(tye, vat) = 
let 

message = statically-compatible.(fpd-v, fpd-r, apd-v, apd-r) 
message : Error   ➔ message 
let  (for n, m, k, p ≥ 0) 

fpd-v  = ((ide-fv.i, ted-fv.i) | i=1;k)          list of formal value-parameter denotations 
fpd-r   = ((ide-fr.i, ted-fr.i) | i=1;n)        list of formal reference-parameter denotations 

apd-v  = (ide-av.i | i=1;p)             list of actual value-parameter denotations 
apd-r  = (ide-ar.i | i=1;m)             list of actual reference-parameter denotations 

checking if actual value-parameters have been declared 

vat.(ide-av.i) = ?   ➔ ‘value-parameter undeclared’   for i = 1;p 
checking if actual reference-parameters have been declared  

vat.(ide-ar.i) = ?    ➔ ‘reference-parameter undeclared’  for i = 1;m 
computing the types of formal value-parameters 

let 
  sta  = ((tye, [ ]), (vat, ‘OK’))                     explanation below 

  typ-fv.i  = ted-fv.i.sta  for i = 1;k             types of formal-value-parameters 

  typ-fr.i = ted-fr.i.sta  for i = 1;n             types of formal-reference-parameters 

typ-fv.i : Error    ➔ typ-fv.i for i = 1;k 
typ-fr.i : Error     ➔ typ-fr.i for i = 1;n 
let 

 
73 Function are-repetitions (Sec. 2.1.4) has been defined for tuples, therefore its argument in this definition is a Carte-

sian composition ‘₵’ of formal-reference and formal-value parameter-lists. 
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 (bod-fv.i, tra-fv.i) = typ-fv.i  for i = 1 ;k 
 (bod-fr.i, tra-fr.i) = typ-fr.i for i = 1 ;n 
(∃ i) bod-fv.i ≠ bod-av.i ➔ ‘incompatible-bodies-of-value-parameters’ 

(∃ i) bod-fr.i ≠ bod-ar.i ➔ ‘incompatible-bodies-of-reference-parameters’ 
(∃ i) (tra-fv.i).((dat-av.i, bod-av.i) ≠ (tt, (‘boolean’) ➔ ‘yoke-not-satisfied-by-val’ 

(∃ i) (tra-fr.i).((dat-ar.i, bod-ar.i) ≠ (tt, (‘boolean’)  ➔ ‘yoke-not-satisfied-by-ref’ 
true        ➔ ‘OK’   

 

Lists of formal and actual parameters are considered dynamically compatible, if: 

1. they are statically compatible, 

2. all actual parameters are declared; note that they do not need to be initialized74, 

3. all type expressions assigned to formal parameters of both categories evaluate to non-errors, 

4. all bodies of mutually corresponding formal- and actual-parameter values of both categories are iden-

tical; the formal-parameter type is defined by a type expression in procedure declaration, and actual-

parameter type is defined in the call-time valuation, 

5. all composites carried by actual parameters satisfy the yokes of corresponding formal parameters; no-

tice that the yokes of actual parameters are not considered at all. 

The computation of the types of formal parameters required a certain technical trick. Since these types are 

defined by type expressions, to compute them, the type expression denotations have to be applied to a state. 

Here is a problem since the function  

dynamically-compatible.(fpd-v, fpd-r, apd-v, apd-r) 

gets as an argument, not the whole state ((tye, pre), (vat, err)) but only two of its elements: tye and vat. To 

cope with this problem, a “temporary” state is created 

((tye, [ ]), (vat, ‘OK’)) 

where [ ] is an empty procedure-environment. As a matter of fact, this environment might be quite arbitrary 

since type expression denotations do not depend on it. 

Notice at the end that each of the numbers n, m, k, and p may be zero, i.e., each of the corresponding 

parameter lists may be empty. 

6.2.4 Passing actual parameters to a procedure 

This function is activated by a procedure call and creates local initial valuation (Fig. 6.2-1). The only identi-

fiers bound in this valuation are formal parameters and their initial values are the current values of the corre-

sponding actual parameters. 

pass-actual : FoPaDe x FoPaDe x AcPaDe x AcPaDe ⟼   

TypEnv x Valuation ⟼  Valuation | Error 

pass-actual.(fpd-v, fpd-r, apd-v, apd-r).(tye, vat) = 
let 

message = dynamically-compatible.(fpd-v, fpd-r, apd-v, apd-r).(tye, vat) 
message ≠ ‘OK’  ➔ message 
let  (for n, k ≥ 0) 

((ide-fv.i, ted-fv.i) | i=1;k) = fpd-v        list of formal-value parameter denotation 

((ide-fr.i, ted-fr.i) | i=1;n)  = fpd-r            list of formal-reference parameter denotation 

(ide-av.i | i=1;k) = apd-v               list of actual-value parameter denotation 

 
74 The assumption that actual parameters do not need to be initialized has been introduce mainly for reference variables. 

For value variables this assumption probably does not have much of a practical value but it is not harmful either. 
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(ide-ar.i | i=1;n) = apd-r               list of actual-reference parameter denotation 
val-v.i = vat.(ide-av.i)   for i=1;k    list of values of actual-value parameter denotation 

val-r.i = vat.(ide-ar.i)   for i=1;n     list of values of actual-reference parameter denotation 
creating list of initial local valuation 

vat-v = [ide-fv.i/val-v.i | i=1;k]                initial local valuation of value-parameters 
vat-r = [ide-fr.i/val-r.i | i=1;n]          initial local valuation of reference-parameters 
vat-il = vat-v ⧫ vat-r                      list of initial local valuation75 

true       ➔ vat-il 

The defined operator checks the compatibilities of parameters, and then creates local initial valuation to be 

later executed by procedure-body: 

• formal value-parameters receive the values (or pseudovalues) of actual value-parameters; the defined-

ness of these values and the compatibility of their types is checked by the function dynamically-com-
patible. 

• formal reference-parameters receive the values  (or pseudovalues) of actual reference-parameters; the 

definedness of these values and the compatibility of their types has been checked by the function dy-
namically-compatible. 

Similarly, as in the former definitions, empty lists of parameters are allowed. 

Notice that the described mechanism of creating initial local valuations does not offer a possibility of using 

global variables, i.e. variables visible both outside and inside procedure-body. The only communication chan-

nel of procedure call between its external and internal worlds are reference parameters that pass their values 

according to the following scheme: 

fpd-v  := the values of apd-v 

fpd-r  := the values of apd-r 

[procedure-body execution] 

apd-r  := value of fpd-r  

6.2.5 Returning reference-parameters to a program 

Whereas formal value-parameters play the role of local variables since they are visible only inside procedure 

body, formal reference-parameters play the role of global variables whose values are modified by procedure 

bodies.  

return-referential : FoPaDe x  AcPaDe ⟼ TypEnv x Valuation x Valuation ⟼ Valuation | Error 

return-referential.(fpd-r, apd-r).(tye, vat-tl, vat-ig) = 
let 

message = dynamically-compatible.((), fpd-r, (), apd-r).(tye, vat-ig)76 
message ≠ ‘OK’  ➔ message  
let 

(ide-ar.i | i=1;n) = apd-r              list of actual reference-parameter denotations 

((ide-fr.i, typ-fr.i) | i=1;k) = fpd-r          list of formal reference-parameter denotations 
  vat-tl.(ide-fr.i) = ? ➔ ‘value-of-reference-parameter-undeclared’  for i = 1;k 

let 

 
75 Local valuation is created as an overwriting of local reference-valuation by local value-valuation. Since their sets of 

identifiers are disjoint, the resulting valuation is a simple expansion of one function by another. The overwriting oper-
ation ⧫ has been defined in Sec. 2.1.3.. 

76 By “()” we denote empty tuples of parameters. Doue to this trick we can apply a four-argument function to two lists of 
parameters. Notice that in principle we do not need to check here the adequacy of parameters since this is checked 
in passing actual parameters to procedure-body (Sec. 6.2.4). However, removing this check would make our definition 
incorrect. 
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val-fr.i = vat-tl.(ide-fr.i) for i=1;n            terminal values of formal ref-parameters 

vat-tg = vat-ig[ide-ar.i/val-fr.i | i=1;n]                   terminal global valuation 
true         ➔ vat-tg  

After procedure-body has been executed, the values of formal reference-parameters in vat-tl are passed to the 

corresponding actual reference parameters in vat-ig. This operation transforms vat-ig into vat-tg. 

As has already been mentioned, this communication mechanism might be described by two symbolic as-

signment-instructions. Before the execution of the body: 

fpd-r := the values of apd-r 

and after its execution 

apd-r := the value of fpd-r.  

If we read these assignments literally, they mean that actual-parameter values are copied to some memory-

space allocated for procedure execution. If a parameter value is a small object like, e.g., a number, then, of 

course, such an implementation is quite acceptable, but if it is a large object, e.g., a database, such a solution 

would be somewhat absurd.  

In the majority of programming languages, this problem is solved by passing references rather than values 

to actual-reference parameters. These references provide access (i.e., a memory address) to the values of 

formal parameters. From a functional point of view, such a solution is equivalent to ours, but if we would like 

to describe it formally, we had to introduce addresses in our model to bind identifiers with addresses and 

addresses with data (as in [53] by M. Gordon). The choice between the two alternatives depend upon the 

addressees of our model ― are they language user or language implementors. According to the philosophy 

assumed in this book, we address our model to users rather than to implementors, and therefore we have not 

introduced addresses. 

6.3 Imperative procedures with single recursion 

In this section, we shall investigate a model described jointly by Andrzej Tarlecki and myself in  [34]. As has 

been already announced, in this model, procedures are purely denotational objects. Consequently, we do not 

talk about procedure denotations but about procedures as such. On the syntactical side, we have only procedure 

declarations and procedure calls. 

6.3.1 Constructor of procedures  

Intuitively speaking, an imperative-procedure is created from a program, frequently called the body of the 

procedure, plus two lists of formal parameters — value parameters and referential parameters — which are 

used by the mechanisms of passing and returning parameters.  

The three elements — two lists of parameters, and a body — will be referred to as the denotations of 

imperative-procedure contents or simply as procedure contents. As already announced in Sec.6.2.1, given a 

declaration-time environment and a denotation of a procedure content, we shall create a procedure, i.e., a 

function which, given a pair of actual parameters, returns a partial function from stores to stores. In our alge-

braic framework the following domain of procedure-content denotations will constitute a new carrier of the 

algebra of denotations: 

icd : IprConDen = FoPaDe x FoPaDe x ProDen 

The only constructor of that domain is  

create-imp-con : FoPaDe x FoPaDe x ProDen ⟼ IprConDen 

whose definition looks a little strange: 

create-imp-con.( fpd-v, fpd-r, prd) = (fpd-v, fpd-r, prd) 
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At first glance, this constructor seems to be an identity function. However, on our algebraic ground, it takes 

three arguments from three carriers of our algebra and returns the result to a fourth carrier. Without that con-

structor, the reachable part of carrier IprConDen would be empty. Why we need that carrier, and as a conse-

quence, its strange constructor, will become better seen when we come to multirecursion in Sec. 6.4.1.  

Now, we can define an auxiliary constructor of procedures that, given two lists of parameter denotations, 

and a program denotation, returns a function, which given an environment, returns a procedure: 

create-imp-proc : IprConDen ⟼ Env ⟼ ImpPro  i.e. 

create-imp-proc : (FoPaDe x FoPaDe x ProDen) ⟼ Env ⟼ AcPaDe x AcPaDe ⟼ Store → Store 

The environment that appears in this definition is a declaration-time environment (we shall denote it by env-
dt) since our procedure will be created by a procedure declaration, hence in a declaration time77. Our con-

structor is an auxiliary function that will not become a constructor of our algebra. Its definition explicitly 

shows how our procedure will elaborate on the initial global store sto-ig when given actual parameters (apd-
v, apd-r): 

create-imp-proc.(fpd-v, fpd-r, prd).env-dt.(apd-v, apd-r).sto-ig = 
 is-error.sto-ig   ➔ sto-ig 
 let 
  (vat-ig, ‘OK’)   = sto-ig 
  (tye-dt, pre-dt) = env-dt                 declaration-time environment 

par     = (fpd-v, fpd-r, apd-v, apd-r) 
vat-il     = pass-actual.par.(tye-dt, vat-ig)               initial local valuation 

vat-il : Error    ➔ (vat-ig, vat-il)                    here vat-il is an error 

let 
sta-il = (env-dt, (vat-il, ‘OK’))                          initial local state 

 prd.sta-il = ?   ➔ ?   

 let  procedure-body execution 
  (env-tl, (vat-tl, err)) = prd.sta-il           the execution of proc. body creates terminal local state 
 err ≠ ‘OK’     ➔ sto-ig ◄ err    (*) 
 let 
  vat-tg = return-referential.(fpd-r, apd-r).(tye-dt, vat-tl, vat-ig) 
 vat-tg : Error   ➔ (vat-ig, vat-tg)   (**)               here vat-tg is an error 

true       ➔ (vat-tg, ‘OK’) 

In the first step we check if the initial global store carries an error and if this is the case, then this store becomes 

the terminal global store. 

In the opposite case, we create the initial local valuation vat-il, where the execution of the procedure body 

will start (see Fig. 6.2-1). It is created form initial global valuation vat-ig by passing values of actual param-

eters to formal parameters (the argument par). We recall (Sec. 6.2.4) that since the operator pass-actual 
checks the adequacy of parameter-lists, this part of procedure-execution may terminate with an error message. 

If that is the case, the terminal store consists of the initial local valuation vat-il and an error, which in our 

definition, is represented by the metavariable vat-il. 

If an error message does not appear, we create an initial local store sto-il with the ‘OK’ message, and we 

create the initial local environment env-il by taking the declaration-time environment. 

The declaration-time environment with an initial local store constitutes an initial local state sta-il.  

In the next step, procedure-body (represented by a program-declaration prd) is executed in sta-il and ― if 

this execution terminates ― then its terminal state sta-tl becomes the local terminal state. 

 
77 Observe that if procedures were supposed to be executed in call-time environments, then they had to be functions of 

the type P : AcPaDe ⟼ Env → Store, i.e. they could  take themselves as arguments, and this leads to a not set-
theoretical model. 
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If that state carries an error, then the terminal store consists of the initial global valuation and the current 

error. 

 Otherwise, we select the terminal local valuation vat-tl from that state and use it in returning the current 

values of formal reference-parameters to actual reference-parameters. If this results with an error than the 

terminal store consists of the initial global valuation and the current error. 

In the opposite case, the terminal global-store (vat-tg, ‘OK’) consists of terminal global-valuation and ‘OK’ 
message. 

It is worth noticing here that the execution of our procedure involves two non-trivial error-handling clauses 

(*) and (**). In both cases, an error message causes not only the interruption of program execution but also 

the recovery of the initial global-store. Of course, this is just one possible choice of an error-handling strategy 

in this place.  

6.3.2 Procedure declaration 

An imperative-procedure declaration assigns a procedure to an identifier in the current environment. This 

procedure is built from a procedure content and declaration time environment. The corresponding constructor 

is therefore the following: 

declare-imp-pro : Identifier x IprConDen ⟼ DecDen  i.e. 

declare-imp-pro : Identifier x FoPaDe x FoPaDe x ProDen ⟼ State ⟼ State 

declare-imp-pro.(ide, fpd-v, fpd-r, prd).sta = 
is-error.sta          ➔ sta 

ide : declared.sta        ➔ sta ◄ ‘identifier-declared’  
let 

((tye, pre), sto) = sta 
 ipr = create-imp-proc.(fpd-v, fpd-r, prd, (tye, pre[ide/ipr])               fixed-point equation 

true              ➔ ((tye, pre[ide/ipr]), sto)   

Observe that procedure ipr is defined here by means of a fixed-point equation. Such a construction allows for 

recursive calls of the declared procedure78.  

Note also that the constructor create-imp-proc receives the declaration-time environment, which means 

that this environment is “remembered” in ipr for later use when ipr is called. Theoretically, we could save in 

ipr only a procedure environment allowing a procedure call to get call-time type environment, thus setting 

ipr : AcPaDe x AcPaDe x TypEnv ⟼ Store → Store 

However, from a practical point of view, it would be rather awkward to expect that programmers, when de-

claring a procedure, will anticipate types that will be declared later. 

6.3.3 Recursion — how does it work? 

The mechanism of recursion usually involves a stack mechanism that handles successive calls of a procedure. 

It can be seen from Fig. 6.2-1, where the initial global store must be saved to be referred to at the end of the 

call. In our case, however, we do not refer to a stack mechanism since recursion in Lingua is described in 

using the recursion in MetaSoft. Formally, the procedure ipr form Sec. 6.3.2 is defined by the fixed-point 

equation: 

ipr = create-imp-proc.(fpd-v, fpd-r, prd, (tye, pre[ide/ipr]) 

 
78 This construction has been suggested by Andrzej Tarlecki in our common paper [34]. In this way recursion in Lingua 

is expressed by the recursion in MetaSoft without involving a usual stack mechanism, and also without involving the 
problem of self-applicable functions.  
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By Kleene’s theorem (Sec. 2.3) this means that ipr is the limit — in this case, a set-theoretic union — of an 

infinite chain of partial functions: 

ipr.0   = create-imp-proc.(fpd-v, fpd-r, prd, (tye, pre[ide/[ ]]) 

ipr.(k+1) = create-imp-proc.(fpd-v, fpd-r, prd, (tye, pre[ide/ipr.k]) 

where [ ] denotes an empty state-to-state function. Here ipr.[k+1] is a function which calls itself k+1 times. 

To see how it works in a concrete case take as an example a recursive procedure that computes nm: 

proc power (val n,m as nn_integer ref p as nn_integer), 

 if m=0 then p:=1 else m:=m-1; call power(val n,m ref p); p:=p*n fi 

endproc 

where nn_integer is a user-defined type corresponding to non-negative integers. Let abort be an instruc-

tion whose denotation is [ ]. Now, the elements of our chain we may be symbolically (and not quite formally) 

described in the following way: 

power.0.(n, m, p)  =  if m=0 then p:=1 else m:=m-1 ● abort ● p:=p*n fi  
=  if m=0 then p:=1 else abort fi  
= m=0 ➔ p=1=n0 

        m>0 ➔ ? 

power.1.(n, m, p)  = if m=0 then p:=1 else m:=m-1 ●  power.0.(n, m, p) ● p:=p*n fi 
       =  if m=0 then p:=1 else m:=m-1; if m=0 then p:=1 else abort fi ● p:=p*n fi 
       = m=0 ➔ p=1=n0 
        m=1 ➔ p=n=n1 
        m>1 ➔ ? 

power.2.(n, m, p) =  m=0 ➔ p=1=n0 
           m=1 ➔ p=n =n1 
           m=2 ➔ p=n2 

    m>2 ➔ ? 

The limit of this chain is, of course, power.  

In the end, assume that a recursive procedure, call it Main, includes a declaration of a local procedure, say 

DoIt. When Main is called, it is “given” its declaration-time environment env-dt, which it uses to create 

its local environment env-lo. In this environment, DoIt is declared. Somewhere during the execution of 

Main, its recursive call gets again env-dt, where it declares DoIt, thus creating the same env-lo as before. 

Notice that if a procedure call would receive a call-time environment, then an attempt to redeclare DoIt 

would cause an error message ‘identifier-declared’. Of course, the same conclusion applies to local types of 

a procedure.  

6.3.4 Instruction of a procedure call 

Calling an imperative procedure consists in executing three steps (cf. Sec. 6.2.1 and Fig. 6.2-1): 

1. getting the called procedure from an environment,  

2. applying to it actual parameters (tuples of identifiers) in order get a store-to-store transformation; this 

transformation is responsible for (see the definition of create-imp-proc in Sec. 6.3.1): 

a. creating an initial local state and passing values of actual parameters to formal parameters in its 

store, 

b. executing the body of the procedure (a program) in the initial local state thus getting a terminal 

local-state 

c. returning values of formal reference parameters to actual reference parameters thus getting a 

terminal global-store, 
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3. combining the terminal global-store with initial global-environment thus getting a terminal global state. 

Formally, we define a constructor 

call-imp-proc : Identifier x AcPaDe x AcPaDe ⟼ InsDen  i.e. 

call-imp-proc : Identifier x AcPaDe x AcPaDe ⟼ State → State 

The resulting denotation of procedure-call instruction is defined in the following way: 

call-imp-proc.(ide, apd-v, apd-r).sta-ig = 
is-error.sta-ig       ➔ sta-ig 
let 

(env-ig, sto-ig) = sta-ig                    initial global state of the call 
 (tye-ig, pre-ig) = env-ig 
pre-ig.ide = ?       ➔ sta-ig ◄ ‘procedure-unknown’ 
pre-ig.ide : FunPro79    ➔ sta-ig ◄ ‘procedure-not-imperative’ 
let 

ipr = env-ig.ide                        the called imperative procedure 
ipr.(apd-v, apd-r).sto-ig = ? ➔ ?                      infinite computation 
let 
 sto-tg = ipr.(apd-v, apd-r).sto-ig                 terminal global store of the call 
 (vat-tg, err) = sto-tg 
is-error.sto-tg      ➔ sta-ig ◄ error.sto-tg 
true           ➔ (env-ig, sto-tg)  

If the call-time state does not carry an error message and the identifier ide is bound in the environment to an 

imperative procedure, then we apply this procedure to actual parameters getting in this way a partial function 

on stores: 

pro.(apd-r, apd-v) : Store → Store 

This function is applied to the initial global store sto-ig. Notice that since our procedure carries declaration-

time environment, the corresponding procedure-body is executed in the state 

(env-dt, vat-ig, ‘OK’)  

where 

env-dt ― declaration-time environment 

sto-ig ― initial global store 

If the terminal store is not defined, then the result of the procedure call is not defined either. If the execution 

of the procedure body raises an error message, then this message is loaded into the initial global state of the 

call. In the opposite case, the terminal global-store of the call sto-tg becomes the component of the terminal 

global-state of the call (env-ig, sto-tg). The initial environment remains unchanged.  

Notice that in this definition, we have neither parameter-adequacy check nor parameter passing since these 

operations are included in the procedure itself (Sec. 6.3.1).  

6.4 Imperative procedures with mutual recursion 

6.4.1 Multiprocedures and their components 

The model of recursion described so far does not cover the case where procedure P calls procedure Q, and 

procedure Q calls procedure P. Of course, at the syntactic level, we cannot exclude such situations, but at the 

 
79 Mathematically the metapredicate of checking if a procedure is imperative or functional is rather evident since the 

domains FunPro and ImpPro are disjoint. Implementationally a possible solution may consists in labeling identifiers in 
procedure environment with e.g. I (for Imperative) and F (for Functional). 
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denotational (and implementational) level, if a procedural mechanism is defined as in Sec. 6.3 then mutual 

recursion will cause an error message ‘procedure-not-declared’. Indeed, if the declaration of P precedes the 

declaration of Q, then the call of Q in the body of P, and thus in the declaration-time environment of P would 

not find Q.  

To solve this problem, P and Q must be defined jointly by one set of fixed-point equations of the form 

P = F(P,Q) 

Q = G(P,Q) 

and, of course, analogously for a larger number of mutually recursive procedures.  

In order to incorporate mutual recursion into our model, we have to modify the constructor of declarations 

in such a way that now instead of taking an identifier and a procedure content, it will take a tuple of such pairs. 

This leads to the following domain of components of multiprocedures: 

mcd : MprComDen = (Identifier x IprConDen)c+              multiprocedure-component denotations 

Note the wording: imperative-procedure content denotations are included in multiprocedure component de-

notations. Now we need two constructors to generate the elements of this domain. The first of them makes a 

one-element tuple of pairs: 

create-mcd : Identifier x IprConDen  ⟼ MprComDen 

create- mcd.(ide, icd) = ((ide, icd)) 

The second constructors joins two tuples into one: 

join-mcd : MprComDen x MprComDen ⟼ MprComDen 

join-mcd.(mcd-1, mcd-2) = mcd-1 ₵ mcd-2 

Now, the definition of the new constructor of declaration denotations is the following: 

declare-imp-mul-pro : MprComDen ⟼ DecDen  i.e. 

declare-imp-mul-pro : MprComDen ⟼ State ⟼ State 

declare-imp-mul-pro.mcd.sta = 
is-error.sta        ➔ sta 

let 
((ide-1, icd-1),…,(ide-n, icd-n)) = imcd 
(fpd-v-i, fpd-r-i, prd-i)     = icd-i  for i=1;n  
(env, sto)          = sta 
(tye, pre)          = env 

are-repetitions.(ide-1,…,ide-n) ➔ sta ◄ ‘procedure-names-are-repeated’ 
ide-i : declared.sta      ➔ sta ◄ ‘identifier-ide-i-declared’          for i=1;n 
let 

ipr-1 = create-imp-proc.(icd-1, (tye, pre[ide-1/ipr-1,…,ide-n/ipr-n])  
… 
ipr-n = create-imp-proc.(icd-n, (tye, pre[ide-1/ipr-1,…,ide-n/ipr-n]) 

true           ➔ ((tye, pre[ide-1/ipr-1,…,ide-n/ipr-n]), sto) 

Notice that if n=1, then our definition coincides with the case of a single recursion.  

6.5 Functional procedures 

The difference between imperative- and functional procedures is that the result of an imperative-procedure 

call is a state, whereas, for functional procedures, it is a value. Imperative procedures may be regarded, there-

fore, as instructions with parameters and functional procedures ― as expressions with parameters. Functional-

procedure calls belong in Lingua-2 to the domain of expressions. 
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6.5.1 The structure of a functional-procedure declaration 

Even though functional procedures correspond to expressions, the bodies of their declarations will consist of 

a program ― may be trivial, i.e., consisting of a trivial declaration and a trivial instruction ― and an expres-

sion. A program transforms an input state and passes the resulting state to the expression, which computes a 

value. This value is exported by the call. Below an example of a declaration of a procedure which computes 

the absolute value of a power nm: 

fun absolute-power(n, m integer) 

let p be integer; 

p := 1 ; 

while m > 0 do p := p٭n ; m:=m-1 od 

return if p ≤ 0 then –p else p fi as integer 

endfun 

In particular, the program that precedes return may be trivial, i.e., of the form skip-d; skip-i, and 

the expression that follows return may be reduced to a single variable80. The expression following return 

will be referred to as an exporting expression.  

In some languages (e.g., in Pascal [56]), global variables are admitted in functional procedures, which 

means that they can change states. It is frequently called a side-effect. In Lingua-2, I deliberately give up this 

option since, in my opinion, each covert action of programs may contribute to programming errors. As a matter 

of fact, the authors of Pascal ― although they allow side-effects ― at the same time, they strongly discouraged 

programmers from using them (see [56] page 79). One may wonder why they have not eliminated that option 

from their language?  

In this place, we can return to the question of why actual parameters were assumed to be identifiers rather 

than arbitrary expressions (cf. Sec. 6.1.3)? Notice that in the opposite case, actual parameters could be func-

tional-procedure calls, which would lead to a new model of recursion and would certainly complicate con-

struction rules for procedures (see Sec. 7). 

A possible technical solution to that problem might be an assumption that actual parameters may be ex-

pressions but could not include procedure calls. Mathematically this is possible, but on the algebraic level, it 

leads to two sorts of expressions (with and without procedure calls) and again complicates proof rules.  

6.5.2 Functional procedures denotationally 

In the case of functional procedures, similarly as for imperative procedures, we deal with three categories of 

mathematical beings: 

• functional procedures              ― store-to-value functions 

• denotations of declarations of functional procedures ― state-to-state functions, 

• denotations of functional-procedure calls      ― state-to-value functions 

Since the calls of functional procedures will belong to the domain of expression denotations, and their decla-

rations to the domain of declarations, we introduce only one new domain: 

fpr  : FunPro = AcPaDe ⟼ Store → ValueE                  functional procedures 

Similarly to imperative procedures, and for the same reason this domain will not become a carrier of our 

algebra of denotations. Consequently functional procedures will not have syntactic representations.  

At the same time, the domain of expression denotations is enriched by the denotations of functional-proce-

dure calls. It is a substantial change in our language since now expression denotations need access to 

 
80 This universal form of a functional-procedure declaration was suggested to me by Andrzej Tarlecki.  
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procedure-environments from which they will take functional procedures. Notice that although expressions 

were formally defined in Linguga-1 on states, they effectively were “reaching” only stores.  

Contrary to imperative procedures that take value parameters and referential parameters, functional proce-

dures have only value parameters. It is another engineering decision, which means that functional procedures 

have no side-effects.  

6.5.3 Constructors of functional-procedure-denotation contents 

The domain of the denotations of  functional-procedure contents is defined in the following way: 

fcd : FprConDen = FoPaDe x ProDen x DatExpDen x TypExpDen 

Compared with imperative procedures, functional-procedure contents include only one list of formal parame-

ters (value parameters) but, on the other hand, include the denotation of an exporting expression and of a type 

expression. The latter defines the expected type of the result of the call.  

Analogously to the case of imperative procedures, also with this domain, we assign only one constructor: 

create-fup-con : Identifier x FoPaDe x ProDen x DatExpDen x TypExpDen ⟼ FprConDen 

create-fup-con.(ide, fpd, prd, ded, ted) = (ide, fpd, prd, ded, ted) 

See comment to the corresponding constructor in Sec. 6.3.1. 

6.5.4 The constructor of a functional procedure 

A functional procedure may be regarded as a sequential composition of three components: 

1. a function that passes actual parameters to the call-time state of the procedure 

2. an instruction, 

3. an exporting expression. 

We start with the definition of an auxiliary exportation function: 

export : DatExpDen x TypExpDen ⟼ State ⟼ ValueE 

export.(ded, ted).sta =  
 is-error.sta          ➔ error.sta 
 let 
  val = ded.sta                                exported value 

typ = ted.sta                       expected type of value 
 typ : Error           ➔ typ 
 val : Error           ➔ val 
 let 

(dat-v, bod-v, yok-v) = val 
   (bod-t, yok-t)    = typ 
 bod-t ≠ bod-v          ➔ ‘bodies-inconsistent’ 
 yok-t.(dat-v, bod-v)  ≠ (tt, (‘boolean’)) ➔ ‘yoke-not-satisfied’81 
 true             ➔ val 

This operator returns a value val computed by the denotation ded of the exporting expression under the con-

dition that: 

1. the body of val equals the body of the type typ computed by ted, 

2. the composite of val satisfies the yoke of typ.  

 
81 Notice that yok.(dat-v, bod-v) ≠ (tt, ‘boolean’) means that either yok.(dat-v, bod-v) = (ff, ‘boolean’) or yok.(dat-v, bod-

v) : Error. 



Andrzej Blikle (in cooperation with Piotr Chrząstowski-Wachtel), A Denotational Engineering of Programming Languages     156 

 

Now we are ready to define the constructor of functional procedures: 

create-fun-pro : Identifier x FprConDen x Env  ⟼ FunPro  i.e. 

create-fun-pro : Identifier x (FoPaDe x ProDen x DatExpDen x TypExpDen) x Env ⟼ 

                            (AcPaDe ⟼ Store → ValueE) 

Similarly to the case of imperative procedures, this constructor is an auxiliary function, i.e., is not a constructor 

in the algebra of denotations.  

create-fun-pro.(ide, (fop-v, prd, ded, ted), env-dt).apd-v.sto-ig = 
 is-error.sto-ig  ➔ error.sto-ig                       initial global store 
 let 
  (vat-ig, ‘OK’)) = sto-ig 
  (tye-dt, pre) = env-dt                  declaration time environment 
  vat-il = pass-actual.(fop-v, (), apd-v, () ).(tye-dt, vat-ig)         initial local valuation 
 val-il : Error  ➔ vat-il 
 let 

sta-il = (env-dt, (vat-il, ‘OK’)) 
 prd.sto-il = ?  ➔ ? 
 let 

sta-tl = prd.sto-il                      terminal local store 

 is-error.sta-tl  ➔ error.sta-tl  
 true     ➔ export.(ded, ted).sta-tl  

Using parameter-passing operator, we create a local initial state that is passed to the program included in the 

procedure body. The exporting expression is evaluated in the output state of that program, and the resulting 

value is the result of the procedure call. The body of this value must be of the type indicated by the type 

expression, which is checked by the exporting operator. The empty tuples () that appear among the arguments 

of this operator correspond to formal and actual referential parameters respectively. 

6.5.5 The expressions of functional-procedure calls 

A functional procedure is a function which given actual value-parameters, returns a data-expression denota-

tion. A call of such a procedure is performed in four steps: 

1. getting the procedure from an environment,  

2. computing the values of its actual parameters, 

3. applying the procedure to parameters to get a data-expression denotation, 

4. applying this denotation to the actual state, which ― if the computation terminates ― returns a value 

or an error message. 

The corresponding constructor is of the type: 

call-fun-pro : Identifier x AcPaDe ⟼ DatExpDen   i.e. 

call-fun-pro : Identifier x AcPaDe ⟼ State → ValueE 

The expression denotation that is created in this way is defined as follows: 

call-fun-pro.(ide, apd).sta = 
is-error.sta    ➔ error.sta 
let 

((tye, pre), sto) = sta 
pre.ide = ?    ➔ ‘procedure-not-declared’ 
pre.ide : ImpPro  ➔ ‘procedure-not-functional’ 
let 



Andrzej Blikle (in cooperation with Piotr Chrząstowski-Wachtel), A Denotational Engineering of Programming Languages     157 

 

fpr = pre.ide                          functional procedure 
fpr.apd.sto = ?   ➔ ? 
true        ➔ fpr.apd.sto  

If the initial state does not carry an error, and a functional procedure has been declared under the name ide in 

the environment, then this procedure is applied to the current actual-parameters and the current store. If the 

application terminates, then its result is the result of the call. It may be a value or an error.  

6.5.6 The declaration of a functional procedure 

In this case, the corresponding constructor is a function of the type: 

declare-fun-pro : FprConDen ⟼ DecDen 

hence 

declare-fun-pro : Identifier x FoPaDe x ProDen x DatExpDen x TypExpDen ⟼ State ⟼ State 

The definition of this constructor is analogous as in the imperative case: 

declare-fun-pro.(ide, fpd, prd, ded, ted).sta = 
is-error.sta      ➔ error.sta  
ide : declared.sta    ➔ sta ◄ ‘variable-declared’ 
let 

((tye, pre), sto)  = sta        
fpr = create-fun-pro.(fpd, prd, ded, ted, (tye-dt, pre-dt[ide/fpr])      fixed-point equation 
true         ➔ ((tye, pre[ide/fpr]), sto) 

The fixed-point character of the definition of fpr allows for recursive calls similarly as in the case of imperative 

procedures.  

6.5.7 Typological procedures ??? 

This section will be written along the lines sketched in Sec. 1.5.8. Or, maybe, not? 

6.6 Procedures as parameters of procedures 

As we already know, the attempt to define procedures that can take other procedures as parameters leads in 

the general case to a non-denotational domain recursion of the type: 

Procedure  = Parameter ⟼ Store → Store 

Parameter  = Value | Procedure 

A mechanism of that sort had been implemented in Algol 60, but a mathematical description of its construction 

has led to non-denotational models or at least non-denotational on the ground of classical set-theory (cf. [75]). 

However, the fact that in “usual” set theory, a function cannot take itself as an argument does not mean that 

it cannot take other functions in this way. To construct a denotation model of procedures with procedural 

parameters, we have to construct a hierarchy of procedural domains (see [33] for more details): 

Procedure.0 = Parameter.0 ⟼ Store → Store 

Parameter.0 = AcPaDe  x AcPaDe  

For n ≥ 0: 

Parameter.(n+1) = Parameter.0 | … | Parameter.n 

Procedure.n    = Parameter.n ⟼ Store → Store 

In this model, a procedure may take as procedural arguments only procedures of a lower level than its own. 

To keep the description of Lingua of a reasonable size, this model shall not be developed further in the book. 
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6.7 Programs 

In Lingua-1, programs consist of a declaration followed by an instruction where, of course, both of them may 

be structured. In Lingua-2, we keep this principle unchanged, but declarations may now include procedure 

declarations of all types. It is again a technical assumption that will make proof-rules simpler.  

6.8 Syntax and semantics 

6.8.1 The signature of the algebra of denotations 

As we remember from Sec. 3.2 and Sec. 5.2.2, concrete syntax of a language is derived from abstract syntax, 

which in turn is derived from the signature of the algebra of denotations. Let us start, therefore, from that 

signature. To a large extent, it is implicit in the definitions of denotation-constructors; however, we have to 

remember that not all constructors defined in Sec. 6 are constructors of our algebra of denotations. Some of 

them were introduced only to define other constructors. On this list, we have functions that describe commu-

nication between imperative procedures and their hosting programs (Sec. 6.2) and all three constructors of 

procedures (Sec. 6.3, 6.4, and 6.5). 

An analogous observation concerns the domains themselves. 

6.8.1.1 The carriers of the algebra of denotations of Lingua-2  

The list below covers all Lingua-2 carriers, including Lingua-1 carriers. New carriers are labeled by NEW.  

 

ide : Identifier                                  identifiers 

 

ded : DatExpDen                data-expression denotations including the calls of functions 

tra  : TraExpDen                    transfer-expression denotations 

yok : YokExpDen                     yoke-expression denotations 

typ : TypExpDen                      type-expression denotations 

 

fpd : FoPaDe    NEW                    list of formal parameter denotations 

apd : AcPaDe    NEW                list of actual parameter denotations 

icd  : IprConDen   NEW                    imperative-procedure-content denotations 

mcd : MprComDen  NEW                        multiprocedure-component denotations 

fcd : FprConDen   NEW                   functional-procedure content denotations 

 

din : InsDen              instruction denotations including the calls of procedures 

ded : DecDen                               declaration denotations 

prd : ProDen                                program denotations 

 

6.8.1.2 New constructors of the algebra of denotations 

 

PARAMETERS 
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Actual parameters 

create-empty-act-par-den :               ⟼ AcPaDe 

create-single-act-par-den : Identifier           ⟼ AcPaDe 

add-act-par-den     : AcPaDe x Identifier        ⟼ AcPaDe 

Formal parameters 

create-empty-for-par-den  :               ⟼ FoPaDe  

create-single-act-par-den : Identifier x TypExpDen     ⟼ AcPaDe 

add-for-par-den     : FoPaDe x Identifier x TypExpDen  ⟼ FoPaDe  

Definitions in Sec. 6.2.2 

 

IMPERATIVE PROCEDURES 

Denotations of imperative-procedure contents 

create-imp-con : FoPaDe x FoPaDe x ProDen ⟼ IprConDen 

Definition in Sec. 6.3.1 

Procedure declarations 

declare-imp-pro : Identifier x IprConDen ⟼ DecDen 

Definition in Sec. 6.3.2 

Procedure calls 

call-imp-proc : Identifier x AcPaDe x AcPaDe ⟼ InsDen 

Definition in Sec. 6.3.4 

 

MULTIPROCEDURES 

Multiprocedure contents 

create-mcd : IprConDen ⟼ MprComDen 

join-mcd  : MprComDen x MprComDen ⟼ MprComDen 

Definitions in Sec. 6.4.1 

Multiprocedure declarations 

declare-imp-mul-pro : ImprConDen ⟼ DecDen 

Definition in Sec. 6.4.1 

Multiprocedure calls 

The calls of multiprocedures are just procedure calls, and therefore neither a new domain nor a new constructor 

are necessary.  

 

FUNCTIONAL PROCEDURES 

Functional-procedure contents 

create-fup-con : FoPaDe x ProDen x DatExpDen x TypExpDen ⟼ FprConDen 

Definition in Sec. 6.5.3 

Function calls 
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call-fun-pro : Identifier x AcPaDe ⟼ DatExpDen 

Definition in Sec. 6.5.5 

Function declarations 

declare-fun-pro : FprConDen ⟼ DecDen 

Definition in Sec. 6.5.6. 

6.8.2 Concrete syntax 

In the process of concrete-syntax creation, we skip the stage of abstract syntax since it has an algorithmic 

character and has already been described in detail for Lingua-A (Sec. 5.2.1). In doing so, we act similar to a 

mathematician who constructs proofs of theorems in an intuitive way rather than formally derives sequences 

of formulas by deduction-rules. However, in both cases, we have to make sure that there exists a theoretical 

fundament that guarantees the mathematical correctness of our constructions. 

Contrary to Sec. 6.8.1.2, where only new constructors have been listed, here we show all syntactic catego-

ries of Linguga-2, although without explicitly repeating these clauses which have been taken from Lingua-A 

and Lingua-1. 

 

ide : Identifier   = (as in Lingua-A) 

 

tre  : TraExp   = (as in Lingua-A) 

yoe  : YokExp   = (as in Lingua-A) 

tex : TypExp   = (as in Lingua-A) 

dae : DatExp  = (as in Lingua-A) | Identifier (ActPar)  

 

ins : Instruction = (as in Lingua-1) | call Identifier (val ActPar ref ActPar)  

 

acp : ActPar  = empty-ap | Identifier | (Identifier, ActPar ) 

fop : ForPar   = empty-fp | Identifier as TypExp sa | ( Identifier as TypExp sa , ForPar ) 

 

ico : IprCon  = ((val ForPar ref ForPar) Program ) 

mpc : MprCon  = (Identifier, IprCon) | (MprCon , MprCon) 

fco : FprCon   = Identifier (ForPar)Pro return DatExp as TypExp ) 

 

dec : Declaration =  
(variable declaration and type declarations as in Lingua-1)  | 
proc Identifier IprCon  endproc         | 

mulproc MprCon endmulproc         | 

fun Identifier FprCon endfun        

 

prg : Program  = (as in Lingua-1) 
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Now, one comment is necessary about our grammar. It concerns actual parameters where empty-ap is a 

keyword whose denotation is an empty list of actual parameters. Notice that our grammar allows the genera-

tion of “awkward” lists of parameters that start with empty-ap, e.g.   

empty-ap, x, y, z 

It is the price that we pay for the simplicity of our grammar. If we wanted to avoid such situations, we had to 

use a grammar with two equations: 

ActPar     = empty-ap | NotEmptyActPar  

NotEmptyActPar = Identifier | NotEmptyActPar , Identifier 

First clause permits for empty lists of actual parameters, the second — permits skipping empty-ap, if we 

want to declare an empty list of parameters. Such a grammar leads to a syntactic algebra which is not similar 

to our algebra of denotations. Of course, we could change the latter to make it similar, but this would mean 

that at the level of denotations, we think about syntax, and this is what we actually want to avoid. We accept, 

therefore, our compromise grammar. Notice in this place, that our grammar allows for the generation of the 

list as we wish to have, e.g.,  

x, y, z 

and on the other hand, each “awkward” list has a sound denotational meaning.  

There is one more issue with actual parameters, which has to be explained. It concerns the fact that a 

procedure call, where a list of parameters is empty, must explicitly indicate this fact. For instance, we cannot 

write 

call inventory (ref x, y) 

but instead, we have to write 

call inventory (val empty-ap ref x, y) 

This sort of discipline may by seen tedious, but it protects programmers against oversight errors. In Lingua, 

every action must be explicit. It is why we have no global variables in imperative procedures and no side-

effects in functional procedures. Analogous remarks apply, of course, to formal parameters.  

6.8.3 Colloquial syntax 

In Lingua-2, we allow all the colloquialisms of Lingua-1, and we add one concerning formal parameters in 

procedure declarations of both types. We allow grouping parameters into lists of variables associated with a 

common type as in the following example: 

proc name(val w,z as number ref x,y as number a,b,c as employee) 

where employee is a user-defined type. 

6.8.4 Semantics 

Since Lingua-2 semantically coincides with Lingua-1, wherever both languages coincide syntactically, in 

this section, we consider these constructions that are not in Lingua-1. We write ide instead of Sid.[ide] since 

the semantics of identifiers is an identity function. We shall use the algebraic style of semantics (see Sec. 4.7).  

Actual parameters 

Sapa : LisActPar ⟼ AcPaDe  i.e. 

Sapa : LisActPar ⟼ Identifierc* 

Sapa.[empty-ap]  = ( ) 

Sapa.[ide]     = (ide) 

Sapa.[apd-1 , apd-2]  = Sapa.[apd-1] © Sapa.[apd-2] 
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Formal parameters 

Sfpa : LisForPar ⟼ FoPaDe  i.e. 

Sfpa : LisForPar ⟼ (Identifier x TypExpDen)c* 

Sfpa.[empty-fp]    = ( ) 

Sfpa.[ide as tex]    = ((ide, Ste.[tex])) 

Sfpa.[lap-1 , lap-2]  = Sfpa.[lap-1] © Sfpa.[lap-2] 

Data expressions: functional-procedure calls 

Sde : DatExp ⟼ DatExpDen 

Sde.[ide(lap)] = call-fun-pro.(ide, Sapa.[lap]) 

Instructions: imperative-procedure calls 

Sin : Instruction ⟼ InsDen 

Sin.[call ide (ref apd-r  val apd-v)] =  

call-imp-pro.(ide, Sapa.[apd-r], Sapa.[apd-v]) 

Imperative procedure contents 

Sipc : IprCon ⟼ IprConDen  

Sipc.[ide (val acp-1 ref acp-2) prg] = (ide, Sfpa.[acp-1], Sfpa.[acp-2], Spr.[prg]) 

The semantics of procedure content yields a tuple of denotations which constitute a procedure-content deno-

tation. 

Imperative-procedure declarations 

Sipd : ImpDec ⟼ IprDecDen 

Sipd.[ico] = declare-imp-pro.(Sipc.[ico]) 

The semantics of procedure declarations first turn a procedure declaration into the denotation of a procedure-

content and then applies to it the constructor of declaration denotations.  

Multiprocedure contents 

Simpc : ImprCon  ⟼ ImprConDen 

Simpc.[ico] = Sipc.[ico] 

Simpc.[imc-1,imc-2] = Smpc.[imc-1] ₵ Smpc.[imc-2] 

Multiprocedure declarations 

Smpd : MultiProcDec ⟼ MprDecDen 

Smpd.[ begin multiproc imc end multiproc ] = 

 declare-mul-pro.(Smpc.[imc]) 

In a more intuitive form (although not quite formally), e.g. if we address our definition to programmers rather 

than to compiler designers, we can write this clause in the following unfolded form 

Smpd.[ begin multiproc  

( 

ide.1(val fpd-v.1 ref fpd-r.1) pro.1 , 

… 

ide.n(val fpd-v.n ref fpd-r.1) pro.n 

) 
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end multiproc ] =  

declare-mul-pro.((ide-i, Sfpa.[fpd-v.i], Sfpa.[fpd-r.i], Spr.[pro.i]) | i=1;n) 

Functional-procedure contents 

Sfpc : FprCon ⟼ FprConDen  

Sfpc.[ ide (acp) prg return dae as tex ] = 

 (ide, Sfpa.[acp], Spr.[prg], Sde.[dae], Ste.[tex]) 

Functional-procedure declarations 

Sfpd : FprDec ⟼ FprDecDen 

Sfpd.[fco] = 

 declare-fun-pro.(Sfpc.[fco]) = 



Andrzej Blikle (in cooperation with Piotr Chrząstowski-Wachtel), A Denotational Engineering of Programming Languages     164 

 

 

7 SEMANTIC CORRECTNESS OF PROGRAMS 

7.1 Historical remarks 

Semantic correctness of programs, historically called program correctness, was a subject of investigations 

from the very beginning of the computer’s era. The earliest paper in this field— today practically forgotten — 

has been published by a British mathematician Alan Turing82 in 1949 [78]. Nearly twenty years later, in the 

year 1967, the same ideas were investigated again by an American scientist Richard Floyd [47]. In 1978 As-

sociation of Computing Machinery established annual Turing Price “for outstanding achievements in infor-

matics”. One of the first winners of that price in 1978 was… Richard Floyd.   

As far as I know, it has never been established if Floyd knew Turing’s work. In the 1980-ties I wrote on 

that subject to Cambridge University. The only answer that I received was a very firm advise that I should not 

try to build “yet another myth about Turing”. 

The work of Floyd introduced a fundamental concept of an invariant of a program and was dedicated to 

programs represented by graphical forms called flow diagrams. Two years later, a British scientist C.A.R 

Hoare (also a Turing Price winner), published a paper concerning Floyd’s ideas applied to structured pro-

grams, i.e., programs constructed with the help of sequential composition, if-then-else branching, and while 

loops. This approach called later Hoare’s Logic had given rise to a large field of research. See also Edsger W. 

Dijkstra [44], and two extensive monographs by K. Apt [4] and by K. Apt and H.R. Olderog [5]. 

Research devoted to program correctness was also developed in Poland. The first paper on that subject 

(although in an approach different to Hoare’s) was published in 1971 by Antoni Mazurkiewicz [61]. A year 

later, during the first conference in a series of conferences on Mathematical Foundations of Computer Sci-

ence83 , Antoni and I have presented a joint paper [32] on a similar subject based on an algebra of binary 

relations and covering recursive programs and nondeterminism. Nearly ten years later, I have published a 

paper [23] with a complete model of program-correctness rules for programs corresponding to arbitrary flow-

diagrams without procedures and recursion. Contrary to many papers in this field and in particular to papers 

developing Hoare’s logic, I assumed that program failure might correspond not only to infinite computations 

but also to program abortion, which is this book is modelled by issuing a state which carries an error. This 

also forces the use of three-valued predicate calculus.  

In this place, it would also be appropriate to mention two fields of research developed at Warsaw Univer-

sity. The first one was a formalized approach to program correctness based on a so-called algorithmic logic 

[10] where programs appear in logical formulas. The second [61] was much more engineering-oriented and 

splits into three areas: grammatical deduction, performance-analysis of computing systems, and formal spec-

ification of software requirements. An interesting application of the second approach is described in a paper 

 
82 Alan Turing (1912-1954) was one of the creators of the theory of computability. His model known today as Turing 

machine is regarded as one of fundamental concepts of this theory. Due to his work "On Computable Numbers, With 
an Application to the Entscheidungsproblem" Turing was considered as one of the greatest mathematicians of the 
world. Unfortunately he was also subject to a homophobic discrimination. When in 1952 police has learned about his 
homosexuality he was forced to choose between prison or hormonal therapy. He has chosen the latter but committed 
a suicide.  

83 This conference was organized in 1972 by a group of young researchers form the Institute of Computer Science of 
the Polish Academy of Sciences and the Department of Mathematics and Mechanics of Warsaw’s University. Next 
year a similar conference was organized in Czechoslovakia witch gave rise to a long series of MFCS conferences. 
Since 1974 proceedings of these conferences have been published by Springer Verlag in the series Lecture Notes in 
Computer Science.  
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by D.L. Parnas, G.J.K. Asmis, J. Madey [70] devoted to a safety assessment of software for a shutdown sys-

tems of the Darlington Nuclear Power Generating Station (Canada).  

The idea of proving programs correct — despite its undoubted scientific importance — was never widely 

applied in software engineering. In my personal opinion, this situation was due to the implicit assumption that 

programs come first and their proofs are built later. This order is natural in mathematics, where a theorem 

precedes its proof but is somewhat unusual in engineering. Imagine an engineer who first constructs a bridge 

and only later performs all the necessary calculations. Such a bridge would probably collapse before its con-

struction was completed, and this is what happens with programs. The first version of code usually does not 

work as expected. Hence a large part of the program development budget is spent on testing and “debugging”, 

i.e., on removing bugs introduced at the stage of writing the code. It is a well-known fact that all bugs can 

never be identified and removed by testing. Hence the remaining bugs are removed on the user’s expense 

under the name of “maintenance”.  

In this book (Sec. 7 and Sec. 8), I am trying to develop ideas sketched earlier in my papers [21] and [22] 

where instead of proving programs correct, a programmer develops correct programs using rules that guaran-

tee the correctness. In such a framework, a software engineer can work as an engineer who builds bridges, 

cars, or airplanes, where products are built from correct components by using rules that guarantee the correct-

ness of the result. 

Since the rules for the development of correct programs are derived from the rules of proving programs 

correct, we shall start from the latter. The discussion is carried on the ground of an algebra of binary relations 

since this leads to a relatively simple model where many technicalities of programming languages can be 

hidden. Of course, to apply these rules in a practical environment, they have to be expressed on the ground of 

a mathematical model of a programming language. A language Lingua-2V (V for “validation”) with such a 

model is constructed in Sec. 8.  

7.2 A relational model of nondeterministic programs 

Each program and each of its imperative components defines a specific input-output relation (I-O relation) 

that describes the transformations of input states into output states. Of course, in a deterministic case, this 

relation is a function. As we are going to see, in the general relational model, we can express quite a few ideas 

associated with program correctness. Although programs in Lingua, as described in this book, are determin-

istic, the discussion of a more general case seems worthwhile, especially that it does not complicate the model.  

 

 

Let S be an arbitrary, possibly infinite, set of elements called states. In Lingua, states are mappings that assign 

values, types, and procedures to identifiers, but in the abstract case, we do not need to assume anything about 

them. In the relational model programs are represented by binary relations over S, i.e., elements of the set: 

a 

b 

c 

Case 1 Case 2 

a 

b 

c 

∞ 

Fig. 7.2-1 Two nondeterministic cases 
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Rel(S, S) = {R | R ⊆ S x S} 

The fact that 

a R b for a, b : S 

means that there exists an execution of program R that starts in a and terminates in b. In a non-deterministic 

case, there may be more than one execution that starts in a. Some may terminate with another state, say c 
(Case 1 of Fig. 7.2-1), some others may be infinite (Case 2 of Fig. 7.2-1). In our model, the difference between 

Case 1 and Case 2 cannot be expressed. In both cases, we can only say that 

a R b and a R c. 

Note that due to the use of states which may carry errors, abortion of a computation from a to b means that b 

carries an error. This also means that if R is a function than the non-existence of a state b such that a R b 

means that a starts an infinite execution.  

If we want to deal with infinite executions explicitly, we need a different concept of program denotations. 

Two such models were analysed in [19]. One uses so-called δ-relations, where a R δ means that there exists 

an infinite computation that starts in a84. In that model, however, we cannot describe the fact that there are 

two or more different infinite computations that start from the same state. Such issues can be handled on the 

ground of yet another model, where program denotations are sets of finite or infinite sequences of states called 

bundles of computations. Both approaches can be used in building denotational models of programming lan-

guages.  

7.3 Iterative programs 

In “prehistoric” informatics of the years 1940/1950, programs were written as lists of labeled instructions 

executed sequentially one after another unless a jump instruction goto interrupted that flow. With jump in-

struction and conditional instruction if-then, one could build an arbitrary graph of elementary instructions 

called a flow-diagram. Early papers on program correctness were devoted to such programs later called iter-

ative programs. 

A general relational model of an iterative program is the following fixed-point set of so called left-linear 

equations85: 

X1 = R11 X1 | … | R1n Xn | E1n  

…                                       (7.2-1) 

Xn = Rn1 X1 | … | Rnn Xn | Enn 

that corresponds to a graph whose nodes are numbers 1,…,n, each relation Rij labelles the edge between i and 

j, and each Ein (exit relation) is a “dangling edge” that start on i, but does not point to any other node. The 

code of such a program may be written as an arbitrarily ordered86 sequences of labelled instructions of the 

form: 

i : do Rij goto j and 

i : do Ein. 

If there is no instruction between i and j, then the relation Rij is assumed to be empty which means that there 

are no runs between i and j. Since the atomic instructions Rij and Ein are not necessarily functions, such a 

 
84 In this model each δ-relation is a union of three set of pairs R ⊆ S x S, D ⊆ S x {δ} and {(δ, δ)}, where S and D may 

be empty.  
85 They are called so because coefficients of variables Xi stand on their left-hand side. A symmetric model of right-linear 

equations of the general form X = XR | Q has been analysed in [23].  
86 The execution of such a program does not depend on the order of its instructions since every instruction points to the 

instruction which should be executed as the next one.  
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program may have a non-deterministic character. For (7.2-1) to be deterministic, two conditions must be 

satisfied: 

• all Rij and Ein must be functions, 

• for every i, all Ri1,…,Rin and Ein must have disjoint domains. 

As has been proved in [23], if (P1,…,Pn) is the least solution of (7.2-1), then Pi is the input-output relation 

on the path from node i to node n. Therefore, if we assume that 1 represents the initial node, and n is the final 

node, then P1 is the input-output relation (the denotation) of our program. The class of iterative programs 

understood in that way, together with their correctness-proof rules, had been investigated in [19] and [23]. It 

is worth mentioning in this place that Pi’s correspond to A. Mazurkiewicz tail functions [64] or D. Scott and 

Ch. Strachey continuations [75]. Both models were published in 1971.  

Programmers of the decade 1950/1960 were competing with each other in building more and more com-

plicated flowchart programs that usually nobody except them was able to understand. Unfortunately, quite 

frequently, the authors themselves were not able to predict the behavior of such programs.  

As a reaction to these problems, first algorithmic programming languages such as Fortran and Algol-60 

were created. They were offering tools for structured programming such as sequential composition, if-then-
else, and while87. Such programs were much easier to understand and also allowed for significant simplifica-

tion of program-correctness proof rules.  

In the sequel, we shall restrict our discussion to only three primary structural constructors since they allow  

for the construction of any flowchart: 

1. sequential constructor denoted by a semicolon “;”, 

2. conditional constructor if-then-else-fi, 

3. loop constructor while-do-od.  

The sequential composition is the composition of relations (functions) as defined in Sec. 2.6. To define the 

remaining constructors, we have to introduce additional concepts. Since in our case the denotations of boolean 

expressions are three-valued partial functions, each of them will be represented by two disjoint set of states: 

   C = {s | p.s = tt} 

 ¬C = {s | p.s = ff} 

Of course, if p is a two-valued total predicate, then C | ¬C = S, and therefore only one set is necessary to 

represent it. Notice also that our model does not distinguish between the two cases: 

p.s : Error 

p.s = ? 

In both of them s : S – (C | ¬C). If we wanted to distinguish between these cased, we had to represent 

predicates by three disjoint sets: 

   C = {s | p.s = tt} 

 ¬C = {s | p.s = ff} 

 eC = {s | p.s : Error} 

where S – (C | ¬C | eC) would include states where the evaluation of p is indefinite. We are not going to do 

so, since in constructing correct programs we equally care about the avoidance of abortion and infinite com-

putations, and therefore we can identify these two cases in our relational model. However, in the denotational 

model of Lingua the case of abortion has been distinguished from infinite looping, because the latter is not 

decidable.  

 
87 The author who introduced the term “structured programming” was a Dutch computer scientist Edsger Dijkstra (see 

[43] and [44]).  
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It may be interesting to see, how on the ground of our relational model, we can express the difference 

between McCarthy’s and Kleene’s operators of propositional calculus. E.g.  

(A, ¬A) and (B, ¬B) = (A ∩ B, ¬A | A ∩ ¬B)  — McCarthy 

(A, ¬A) and (B, ¬B) = (A ∩ B, ¬A | ¬B)   — Kleene 

Now, let P and Q represent arbitrary programs and the pair of disjoint sets of states (C,¬C) ― an arbitrary 

three-valued partial predicate. Our three structural constructors may be defined as particular cases of the uni-

versal set of equations (7.2-1). We recall that for any set of states A  

[A] = {(a, a) | a : A} 

is a subset of identity relation (function).  

Sequential composition; P ; Q 

X = P Y 

Y = Q 

Therefore by theorem 2.3-2: 

X = P Q 

Conditional composition; if (C,¬C) then P else Q fi 

X = [C] Y | [¬C] Z 

Y = P 

Z = Q 

where [C] and [¬C] are identity functions (see Sec. 2.6). Therefore by theorem 2.3-2:: 

X = [C] P  |  [¬C] Q 

Loop;  while (C,¬C) do P od 

X = [C] P X | [¬C] 

Therefore by theorem 7.3-1 

X = ([C] P)* [¬C] 

Summarizing our definition: 

1. P ; Q          = P Q 

2. if (C,¬C) then P else Q fi  = [C] P  |  [¬C] Q 

3. while (C,¬C) do P od    = ([C] P)* [¬C] 

At the end one methodological remark is necessary. Although in Lingua all programs are deterministic, hence 

correspond to functions rather than relations, in the relational theory of program correctness we shall mainly 

talk about arbitrary relations (with an exception of while loops), since in these cases determinism does not 

contribute to the simplification of proof rules.  

7.4 Procedures and recursion 

The next step towards the development of structured-programming techniques was the introduction of proce-

dures and, in particular — recursive procedures. On the ground of the algebra of relations mutually recursive 

procedures may be regarded as components of a vector of relations (R1,…,Rn) which is the least solution of a 

set of fixed-point polynomial equations of the form: 

X1 = Ψ1.(X1,…,Xn) 

…      
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Xn = Ψn.(X1,…,Xn) 

In these equations, each Ψi(X1,…,Xn) is a polynomial, i.e., a combination of variables and constants by com-

position and union, e.g., AXYB | XXC. Such sets of equations may be regarded as single fixed-point equations 

in a CPO of relational vectors ordered content-wise, i.e., in the CPO over the carrier: 

Rel(S,S)cn = {(R1,…,Rn) | Ri : Rel(S,S)} 

Every such set of polynomial equations defines a vectorial function: 

Ψ : Rel(S,S)cn ⟼ Rel(S,S)cn  

Ψ.(R1,…,Rn) = (Ψ1.(R1,…,Rn),…, Ψn.(R1,…,Rn)) 

If each Ψi is continuous in all its variables, then Ψ is continuous as well, and therefore Kleene’s theorem holds 

(Sec. 2.3).   

Since the correctness problem for recursive procedures is much more complicated than in the iterative case 

(see [5]), we shall investigate in Sec. 7.6.2 and Sec. 7.7.2 a simple scheme of a recursive procedure with only 

one procedural call that corresponds to an equation of the form: 

X = HXT  |  E                                    (7.4-2) 

where H, T, E : Rel(S,S) are relations called the head the tail and the exit of the procedure, respectively. 

Although this is certainly not a general scheme for a recursive procedure, it seems quite common in practice. 

This scheme will be referred to as a simple recursion.  

Notice that (7.4-2) covers the case of the iterative instruction  while-do-od with H = [C]P, T = [S] and E 
= [¬C].  

7.5 Three concepts of program correctness 

To express the property of program correctness on the ground of binary relations, we shall use two operations 

of a composition of a relation with a set. Both are similar to sequential compositions of relations, as defined 

in Sec. 2.6. In the sequel A, B, C,… will denote subsets of the set of states S and P, Q, R,… will denote 

relations in Rel(S,S). Both operations are denoted by the same symbol “●”, which has also been used for a 

composition of functions: 

A●R = {s | (∃a:A) a R s}  ― left composition; the image of A by R 

R●B = {s | (∃b:B) s R b}  ― right composition; the coimage of B by R. 

In the sequel, the symbol of composition “●” will be omitted; hence we shall write AR and RA. Intuitively 

speaking (see Fig. 7.5-1): 

• AR is the set of all final states of executions of R that start in A; notice however that some of them may 

be at the same time final states of executions that start outside A,  

• RB is the set of all initial states of executions of R that terminate in B, but if R is not a function, then 

some of them may at the same time generate executions that terminate outside B or do not terminate at 

all. 
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Fig. 7.5-2 Left- and right composition of a set with a relation 

Both compositions of a relation with a set have properties similar to that of the composition of two relations. 

For instance, they are associative: 

A(RQ) = (AR)Q 

(RQ)B = R(QB) 

and distributive over unions of sets and relations: 

(A | B) R  = (AR) | (BR) 

A (R | Q) = (AR) | (AQ) 

… 

They are also monotone in each argument: 

if A ⊆ B  then  AR ⊆ BR 

if R ⊆ Q  then  AR ⊆ AQ 

and analogously for right-hand-side composition. In fact, both operations are continuous in each argument. In 

the sequel, we shall assume that composition binds stronger than union hence we shall write 

AR | BR instead of (AR) | (BR) 

Now let us recall (Sec. 2.6) that  

[A] = {(a, a) | a:A} 

denotes a subset of identity relation (i.e., function) on sets restricted to A 

Lemma 7.5-1 For any A,B,C ⊆ S, and R : Rel(S,S) the following equalities hold: 

1. [A]B = A∩B 

2. A[B] = A∩B 

3. (A∩B)R = A [B] R 

4. R(A∩B) = R [A] B 

5. (A∩B)R ⊆ C is equivalent to A[B]R ⊆ C 

6. if A ⊆ [B]RC then (A∩B) ⊆ RC ■ 

Proofs are left to the reader. 

Now we are ready to define three fundamental concepts concerning the correctness of programs: partial 

correctness, weak total correctness, and clean total correctness. All these concepts express the fact that if an 

input state of a program satisfies certain conditions, then the output state has expected properties. For instance, 

we may expect that a list-sorting program, when given an appropriate list (precondition), will return a sorted 

list (postcondition).  
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With every property of states, we can unambiguously associate a set of states with that property. As con-

sequence correctness of a program R wrt a precondition A and postcondition B may be easily expressed in the 

algebra of relations and sets: 

AR ⊆ B ― partial correctness of R wrt precondition A and postcondition B; 

     (∀a:A) if (∃ b) aRb then b:B 

A ⊆ RB ― weak total correctness88 of R wrt precondition A and postcondition B; 

     (∀a:A) (∃ b) aRb and b:B 

Partial correctness means that every execution that starts in A, if it terminates, then it terminates in B. Set A is 

called partial precondition, and B is called partial postcondition. If B does not contain error-carrying states 

then we talk about clean partial correctness.  

Weak total correctness means that for every state a in A, there exists an execution that starts in a and 

terminates in B. Set A is called weak total precondition, and B is called weak total postcondition. The adjective 

“weak” expresses the fact that the existence of an execution from a to B does not exclude that other executions 

starting with a may terminate outside B  or do not terminate at all. Similarly as in the former case, if B does 

not contain error-carrying states then we talk about weak clean total correctness. 

Both defined concepts of program correctness were historically introduced for deterministic programs, i.e., 

for the case where R was a function. In such cases, the inclusion A ⊆ RB means that each execution of R that 

starts in A terminates in B. That property will be called total correctness or clean total correctness respec-

tively. 

As is easy to see, in the non-deterministic case, none of the partial and total correctness is stronger than the 

other. Indeed, partial correctness does not imply termination, and the existence of one terminating execution 

from a to B does not mean that any terminating execution starting in a will terminate in B.  

In the deterministic case, however, total correctness obviously implies partial correctness. i.e., for any par-

tial function F : S → S, 

A ⊆ FB implies AF ⊆ B                                              (7.5-1)  

The following implication is also true: 

if AF ⊆ B and for every a : A, F.a is defined, then A ⊆ FB                        (7.5-2) 

Both observations lead to the following theorem: 

Theorem 7.5-1 If F is a function then for any A,B ⊆ S the following facts are equivalent: 

• A ⊆ FB      — total correctness of  F wrt A and B 

• AF ⊆ B and A ⊆ FS  — partial correctness of  F wrt A and B, plus termination of  F on A 

Clean termination of a deterministic program F on A means that F is a total function of A, and F.a never 

carries an error.  

We say that a deterministic program has a halting property in A, if no execution of that program that starts 

in A is infinite.  

For many “practical programs”, the halting property may be so obvious that it does not need a formal proof. 

For instance, the program: 

pre n, m > 0 

x := 1; 

y := m; 

while x < n  

 
88 In the earlier versions of the book the weak total correctness of relations was called just total correctness. Krzysztof 

Apt convinced me that such wording may lead to misunderstanding. He also pointed out that in [6] written by him and 
two other authors the notion of weak total correctness is used in a slightly different way. It is used in the context of 
distributed programs and combines partial correctness with absence of failures and divergence freedom. 
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do; 

x := x+1; 

y := y*m 

od 

post y = m^n 

obviously halts for every n. However, there are cases where the halting property may be far from evident. One 

such program is displayed on the front of Warsaw University Library: 

x := n; 

while x > 1  

do 

if x mod 2 = 0 then x := x/2 else x := 3x + 1 fi 

 od 

Under the program we see the following question: “Why for every n>0 this program stops?”. This question 

is, however, not quite adequate, since today we do not know if this program has a halting property.  It is a 

well-known Collatz hypothesis formulated in 1937 and not answered until today. At the date, I am writing 

these words (March 2021), it has been proved89 only that the hypothesis is true for all n < 5*290. 

A similar situation concerns Fermat’s theorem91 that was announced in the year 1637 and proved only in 

1994 by a British mathematician Andrew Wiles. His proof is 100 pages long and uses an advanced topological 

theory of elliptic curves. Fermat theorem can be also formulated as a halting problem.  

On the ground of the theory of computability, it has been proved (Alan Turing) that there is no algorithm 

which for every program and every input state could effectively — i.e., in a finite number of steps — decide 

whether this program stops for this input state.  

Theorem 7.5-2 In the general case, the termination property of programs is not decidable. ■ 

In the sequel, proof rules for program correctness will be expressed by showing in which way the correctness 

of composed programs may be proved by proving the correctness of their components. In the most general 

case such rules will be written in the following form: 

first condition 

second condition 
… 

correctness thesis 

where the arrow shows the direction of implication. In some rules, we have both-sided arrows, which means 

that the implication is of the iff-type. As we shall see in Sec. 8.5, these rules indicate ways of building correct 

programs from correct components.  

 
89 One could (naïvely) expect that this result was proved by a simple checking by means of a ultra-fast computer. 

However, as is easy to check, if we assume that the execution of Collatz program for any n < 5*289 takes on the 
average 1 nanosecond then such a check would take a time longer then 1065 times the age of the universe.  

90 I once fell victim to this hypothesis, when I was referring my work on total correctness of programs at the University 
of Saarbrücken. When I said that with my method one can easily prove the termination of the program, someone in 
the room asked me to illustrate this in a very simple example, and he gave me the Collatz program. I did not know this 
example, so I wrote the program on the board and proceeded to analyze it. Since I was not able to solve the problem 
off hand, I said I'd think about it this evening. But I still haven't had that proof in the evening. What a shame ― such a 
simple program, and I cannot cope with it. After returning to Warsaw I showed the problem to my colleagues and then 
I was enlightened that I was not the only one who was not able to solve the Collatz’s problem. I was truly relieved. 

91 This theorem claims that for no integer n > 2 there exist three positive integers x, y, z that satisfy the equality xn + yn  
= zn. That theorem had been written in 1637 by Fermat on the margin of a book together with a commentary that he 
found a “marvellously simple proof” of the theorem which was however too long to fit to the margin. The theorem has 
been proved by Andrew Wiles in 1993. 
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It should be emphasized in this place that in our approach to program correctness, we are not building any 

“logic of programs” in Hoare’s style (cf. [55], [4], and [5]). We only construct a set-theoretical (denotational) 

model of programs where the latter are represented by binary relations (or functions). On the ground of this 

model, program correctness is expressed by inclusions of the form AP ⊆ B or AP ⊆ B. Then, we formulate 

and prove some lemmas which may be used in proving programs correctness. For short, these lemmas are 

called Proof rules.  

In the end, one comment about the use of single sets of states A, B ,… ⊆ S as pre- and post-conditions, 

rather than pairs (C,¬C), which represent three-valued predicates. As a matter of fact A, B ,… also correspond 

to three-valued predicates, but if we use them as pre- and post-conditions, we are only interested in their 

“domains of satisfaction”, i.e., in the first element of each pair (C,¬C). For instance, in proving the correctness 

of a program with a precondition: 

1/x > 2                                (*) 

we are only interested in the behavior of the program whenever our precondition is satisfied. We do not care 

about that behavior in all other cases. If, however, condition (*) appears as a boolean expression of an if-then-
else-fi instruction, we must not forget that for x = 0 the value of that condition is neither true or false. It will 

be better seen in Sec. 8.  

7.6 Partial correctness 

Although our primary concern is total correctness of programs, the methods of proving partial correctness are 

of interest too since in the deterministic case, proof of total correctness may be reduced to a proof of partial 

correctness plus a proof of termination (Theorem 7.5-1). In turn, although in the general case termination 

property is not decidable, in many practical cases, it may be quite easy to prove.  

7.6.1 Sequential composition and branching 

When defining program correctness proof rules, it is worth distinguishing between two classes of program 

constructors: simple constructors that do not introduce repetition mechanisms and recursive constructors 

which introduce such mechanisms. The former are defined by composition and union of relations; the latter 

require fixed-point equations. From this perspective, iteration is a particular case of recursion.  

The most frequently used simple constructors of programs are sequential composition and branching.  

 

Rule 7.6.1-1 Partial correctness of a sequential composition 

For arbitrary A,D ⊆ S and P,Q : Rel(S,S) the following rule is satisfied: 

there exist conditions B and C such that: 

(1) AP  ⊆ B 

(2) CQ  ⊆ D 

(3) B   ⊆ C 

(4) A(PQ) ⊆ D 

 

Proof From (1), (2) and the monotonicity of composition 

(AP)Q ⊆ CQ ⊆ D 

hence from the associativity of composition 

A(PQ) ⊆ D.   

To prove the bottom-to-top implication is sufficient to set 

B = C = AP 
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Hence AP ⊆ B and BQ = APQ ⊆ D ■  

 

Rule 7.6.1-2 Partial correctness of if-then-else-fi 

For arbitrary A,D,C,¬C ⊆ S and P,Q : Rel(S,S), if C ∩ ¬C = Ø, then the following rule is satisfied: 

(1) (A ∩ C)P    ⊆ B 

(2) (A ∩ ¬C)Q   ⊆ B 

(3) A if (C, ¬C) then P else Q fi ⊆ B 

 

The proof is obvious.  

In the end, three more rules which follow directly from the monotonicity of composition of a set with a 

relation. 

 

Rule 7.6.1-3 Strengthening a partial precondition 

For every P : Rel(S,S) and any A,B,C ⊆ S the following rule holds: 

AP  ⊆ B 

C    ⊆ A 

CP ⊆ B 

 

Rule 7.6.1-4 Weakening a partial postcondition 

For every P : Rel(S,S) and any A,B,C ⊆ S the following rule holds: 

AP ⊆ B 

B   ⊆ C 

AP ⊆ C  

 

Rule 7.6.1-5 The conjunction of pre- and postconditions 

For every P : Rel(S,S) and any A,B,C,D ⊆ S the following rule holds: 

AP ⊆ B 

CP ⊆ D 

(A∩C)P ⊆ B∩D 

 

In the present section we skip the problem of proving properties of atomic components of programs such as, 

e.g., assignments or variable declarations. It is because in the model of abstract binary relations such rules 

cannot be expressed. This issue will be discussed in Sec. 8 where Lingua-2V enters the game. 

7.6.2 Recursion and iteration 

In order to formulate proof rules for mutually recursive procedures, we generalize the operation of composi-

tion of relations with relations and with sets to the case of vectors of respectively relations and sets: 

(P1,…,Pn) (R1,…,Rn) = (P1R1,…,PnRn) 

and analogously for the composition of a relation with sets. In an obvious way, we can also generalize the 

inclusion of sets to the inclusion of vectors: 
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(A1,…,An) ⊆ (B1,…,Bn) means A1 ⊆ B1 and … and An ⊆ Bn 

For simplicity, the inclusion between vectors of sets is denoted by the same symbol as the inclusion of sets. 

In the sequel vectors of sets and relations as well as operations on them will be written with boldface charac-

ters.  

A vector of relations R is said to be partially correct wrt the vectors of sets A and B (with appropriate 

numbers of elements) iff A R ⊆ B. The notion of a continuous function is generalized to the case of vectorial 

functions in an obvious way.  

Now we can formulate partial-correctness proof rule in the general case of fixed-points of continuous func-

tions on vectors of relations. Although this case is restricted to polynomial functions, this assumption does not 

contribute to the simplicity of the rule. For concrete, simple polynomials, such rules will be shown a little later 

in this section. 

 

Rule 7.6.2-1 Partial correctness of a vector of relations defined by a fixed-point equation 

For every continuous function Ψ : Rel(S,S)cn ⟼ Rel(S,S)cn, if  R is the least solution of the equation X = 
Ψ.X, then for any A,B : Scn the following rule holds, where Ø = (Ø,…, Ø) is a n-element vector of empty 

relations: 

there exists a family of (vectors of) preconditions {Ai | i ≥ 0}  
and a family of (vectors of) postconditions {Bi | i ≥ 0} such that  

(1) (∀i ≥ 0) A   ⊆ Ai 

(2) (∀i ≥ 0) Ai Ψi.Ø ⊆ Bi 

(3) U{Bi | i ≥ 0}    ⊆ B 

(4) AR      ⊆ B 

Proof Form Kleene’s theorem (Sec. 2.3) 

R = U {Ψi.Ø | i ≥ 0} 

Adding the components of (1) sidewise we obtain 

U (Ai {Ψi.Ø | i ≥ 0} ⊆ U{Bi | i ≥ 0}   

hence from (1) and (3), we have (4). To prove the bottom-up implication, we assume 

Bi = A (Ψi.Ø) for i ≥ 0  and 

Ai = A ■ 

From this rule, we obtain immediately a rule for single recursion, i.e., where n = 1: 

 

Rule 7.6.2-2 Partial correctness of a relation defined by a fixed-point equation 

For every continuous function Ψ : Rel(S,S) ⟼ Rel(S,S), if R is the least solution of the equation X = Ψ.X, 

then for any A,B ⊆ S the following rule holds: 

there exists a family of preconditions {Ai | i ≥ 0}  
and a family of postconditions {Bi | i ≥ 0} such that  

(1) (∀i ≥ 0) Ai Ψi.Ø ⊆ Bi 
(2) (∀i ≥ 0)   A ⊆ Ai 

(2) U{Bi | i ≥ 0}  ⊆ B 

(3) AR      ⊆ B 

 

We can also formulate more specific rules for each particular polynomial function, e.g., for the simple-recur-

sion constructor as defined in Sec. 7.4. Below two versions of such a rule: 
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Rule 7.6.2-3 Partial correctness of a relation defined by simple recursion (version 1) 

For any H,T,E : Rel(S,S), if the relation R is the least solution of the equation 

X = HXT | E  

then for any A,B ⊆ S the following rule holds: 

there exists a family of preconditions {Ai | i ≥ 0}  
and a family of postconditions {Bi | i ≥ 0} such that  

(1) (∀i ≥ 0) Ai Hi E Ti ⊆ Bi 
(2) (∀i ≥ 0)    A ⊆ Ai 

(2) U{Bi | i ≥ 0}   ⊆ B 

(3) AR       ⊆ B 

 

The proof follows immediately from Rule 7.6.2-2 and from the fact that, as is easy to prove, 

R = U{Hi E Ti | i ≥ 0} ■ 

 

The following top-down-implication rule with a stronger assumption may be useful as well: 

 

Rule 7.6.2-4 Partial correctness of a relation defined by simple recursion (version 2) 

For any H,T,E : Rel(S,S), if the relation R is the least solution of the equation 

X = HXT | E  

then for any A,B ⊆ S the following rule holds: 

(1) (∀ Q) (AQ ⊆ B implies A(HQT) ⊆ B) 

(2) AE  ⊆ B 

(3) AR ⊆ B 

 

Proof From (1) and (2) we can prove by induction that for every i ≥ 0: 

A (Hi E Ti) ⊆ B 

and, therefore, by side-wise summation, we get (3). ■ 

As Andrzej Tarlecki pointed to me, this rule may also be written in an alternative way: 

 

Rule 7.6.2-5 A Partial correctness of a relation defined by simple recursion (version 3) 

For any H,T,E : Rel(S,S), if the relation R is the least solution of the equation 

X = HXT | E  

then for any A,B ⊆ S the following rule holds: 

 

(1) AH  ⊆ A 
(2) AE  ⊆ B 

(3) BT  ⊆ B 

(4) AR  ⊆ B 
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Proof The three inclusions (1), (2), and (3) imply that for any i > 0, we have  

A (Hi E Ti) ⊆ A E Ti ⊆ B Ti ⊆ B. ■  

Now let us denote by 

while (C, ¬C) do P od 

the least solution of the equation 

X = [C]PX | [¬C]. 

Setting H = [C]P, T = [S] and E = [¬C] from both general rules we can draw rules for while-do-od iteration: 

 

Rule 7.6.2-6 Partial correctness of while-do-od loop (version 1) 

For every relation P : Rel(S,S), any disjoint C, ¬C ⊆ S, and any A,B ⊆ S the following rule holds: 

there exists a family of postconditions {Bi | i ≥ 0} such 

that 

(1) (∀ i ≥ 0) A ([C]P)i [¬C]  ⊆ Bi 

(2) U{Bi | i ≥ 0}      ⊆ B 

(3) A while (C, ¬C) do P od ⊆ B 

 

Rule 7.6.2-7 Partial correctness of while-do-od loop (version 2) 

For every relation P : Rel(S,S), any disjoint C, ¬C ⊆ S, and any A, B ⊆ S the following rule holds: 

(1) (∀ Q) AQ ⊆ B implies A [C]QP ⊆ B 

(2) A[¬C]   ⊆ B 

(3) A while (C, ¬C) do P od ⊆ B 

■ 

In the literature, the following rule is also well known, although it is usually formulated for the case of two-

valued predicates, i.e. where C | ¬C = S  

 

Rule 7.6.2-8 Partial correctness of while-do-od loop (version 3) 

For every relation P : Rel(S,S), for any disjoint C,¬C ⊆ S, any A, B ⊆ S, the following rule is satisfied: 

there exists N ⊆ S (called loop invariant) such that: 

(1) (N ∩ C) P  ⊆ N 

(2) A     ⊆ N 

(3) N [¬C]   ⊆ B 

(4) A while (C, ¬C) do P od ⊆ B 

■ 

Proof Let (1) – (3) be satisfied. Since 

(N ∩ C) P = N [C] P 

from (1) we can prove by induction: 

N([C]P)i ⊆ N for all i ≥ 0 

Therefore and from (2) 
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A([C]P)i ⊆ N  for all i ≥ 0 

hence from (3) 

A([C]P)i[¬C] ⊆ N[¬C] ⊆ B  for all i ≥ 0 

In summing these inclusions sidewise, we get (4). Now assume that (4) is satisfied and let us set: 

(5) N = A([C]P)* 

Therefore and from (4) we get N[¬C] ⊆ B, hence (3). In turn (5) is equivalent to 

N = A | A([C]P)+, 

hence (2). To prove (1) notice that: 

(N∩C)P = N[C]P = A[C]P | A([C]P)+[C]P = A([C]P)+ ⊆ N  ■ 

7.7 Weak total correctness 

Rules for weak total correctness are used to prove that if an input state of a program satisfies a precondition, 

then at least one execution of that program will terminate with postconditions being satisfied. If our program 

is deterministic, then weak total correctness coincides with clean total correctness which means that the unique 

execution of a program terminates with a state satisfying a postcondition. 

7.7.1 Sequential composition and branching 

 

Rule 7.7.1-1 Weak total correctness of a composition 

For any A,D ⊆ S and P,Q : Rel(S,S) the following rule holds: 

there exist conditions B and C such that  

(1) A ⊆ PB 

(2) C ⊆ QD 

(3) B ⊆ C 

(4) A ⊆ (PQ)D 

 ■ 

Proof. From (1), (2) and (3) we immediately have: 

A ⊆ PB ⊆ PC ⊆ P(QD) = (PQ) D. 

Now assume that A ⊆ (PQ)D, which means that A ⊆ P(QD). Assuming B = C = QD we get (1) and (2). ■ 

 

Rule 7.7.1-2 Weak total correctness of if-then-else92 

For any A,B,C,¬C ⊆ S and P,Q : Rel(S,S), if C ∩ ¬C = Ø, then the following rule is satisfied: 

(1) A ∩ C   ⊆ PB 

(2) A ∩ ¬C ⊆ QB 

(3) A    ⊆ C | ¬C 

(4) A  ⊆ if (C, ¬C) then P else Q fi B 

 

Proof. Let (1) – (3) be satisfied. Then: 

 
92 Notice that in case of two-valued predicates, condition (3) is not necessary, since C | ¬C = S. 
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[C] (A ∩ C)     ⊆ [C] PB 

[¬C] (A ∩ ¬C) ⊆ [¬C] QB 

Adding the inclusions sidewise: 

[C] (A ∩ C)  | [¬C] (A ∩ ¬C) ⊆ [C] PB | [¬C] QB = ([C]P | | [¬C] Q) B 

The following equalities are also true 

[C] (A ∩ C) = A ∩ C 

and analogously for ¬C. Hence and from (3) 

[C] (A ∩ C)  | [¬C] (A ∩ ¬C) = (A ∩ C)  | (A ∩ ¬C) = A  

and finally 

(4) A  ⊆ [C] PB | [¬C] QB  

In turn, (4) implies A ⊆ C | ¬C, and from (4) and the fact that C and ¬C are disjoint, follow (1) and (2). ■ 

Observe the assumption (3) in our rule. In the case of classical predicates where C | ¬C = S, this condition 

is a tautology. Therefore, in Hoare’s logic, which is built for classical predicates, this condition is simply 

omitted. In that case, however, we can prove the total correctness of a program, that aborts. For an explanation 

and an example, see Sec. 8.5.2 and Rule 8.5.2-7.  

In the end, three more rules for pre- and postconditions analogous to the respective rules for partial correct-

ness.  

 

Rule 7.7.1-3 The strengthening of a weak total precondition 

For every P : Rel(S,S) and any A,B,C ⊆ S the following rule holds: 

A ⊆ PB 

C ⊆ A 

C ⊆  PB 

 

Rule 7.7.1-4 The weakening of a weak total postcondition 

For every P : Rel(S,S) and any A,B,C ⊆ S the following rule holds: 

A ⊆ PB 

B ⊆ C 

A ⊆ PC 

 

Rule 7.7.1-5 The conjunction of conditions 

For every P : Rel(S,S) and any A,B,C,D ⊆ S the following rule holds: 

A ⊆ PB 

C ⊆ PD 

A∩C ⊆ P(B∩D) 

 

7.7.2 Recursion and iteration 

Similarly, as in the case of partial correctness, we start from the case of a general recursive operator. 
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Rule 7.7.2-1 Weak total correctness of a vector defined by a general fixed-point equation 

For every continuous function Ψ : Rel(S,S)cn ⟼ Rel(S,S)cn, if  R is the least solution of  X = Ψ.X, then the 

following rule holds, where Ø = (Ø,…,Ø): 

 

there exists a family of preconditions  {Ai | i ≥ 0}  
and a family of postconditions {Bi | i ≥ 0} such that  

(1) (∀ i ≥ 0) Ai  ⊆ (Ψi.Ø)Bi 
(2) A     ⊆ U{Ai | i ≥ 0} 

(3) (∀ i ≥ 0) Bi  ⊆ B 

(4) A ⊆ RB 

 

Proof  If R is the least fixed point of Ψ, then from the continuity of Ψ  

(4) R = U{Ψi.Ø | i ≥ 0} 

Adding sidewise inclusions (1) we have 

U {Ai | i ≥ 0} ⊆ U ({Ψi.Ø | i ≥ 0}  Bi)  

Hence from (2) and (3), we have (4). Now assume that A ⊆ RB which means that  

A ⊆ U{Ψi.Ø | i ≥ 0} B 

Let for i ≥ 0 

Ai = (Ψi.Ø) B and  

Bi = B 

Then obviously (1), (2), and (3) are satisfied. ■ 

From this rule for n = 1, we immediately have 

 

Rule 7.7.2-2 Weak total correctness of a relation defined by a general fixed-point equation 

For every continuous function Ψ : Rel(S,S) ⟼ Rel(S,S), if  R is the least solution of an equation X = Ψ.X, 

then the following rule holds: 

there exists a family of preconditions  {Ai | i ≥ 0}  
and a family of postconditions {Bi | i ≥ 0} such that 

(1) (∀ i ≥ 0) Ai  ⊆ (Ψi.Ø)Bi 
(2) A     ⊆ U {Ai | i ≥ 0} 

(3) (∀ i ≥ 0) Bi  ⊆ B 

(4) A ⊆ RB 

 

As we know well, a call of a recursive procedure may generate an infinite execution. Therefore, it is worth 

asking a question, where our rule tackles the halting problem? Of course, formally, the halting property is 

guaranteed by (4). But where is it hidden in the proof of that fact, i.e., above the line? In fact, it is expressed 

by the conjunction of (1) and (2). If a : A, then by (2), there exist an i ≥ 0 such that a : Ai. This fact guarantees 

by (1) the existence of an execution that starts in a and terminates in Bi after exactly i recursive calls of our 

procedure.  

Of course, an analogous argument applies to Rule 7.7.2-1, but its interpretation in the case of a single 

procedure may be easier to appreciate.  
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Rule 7.7.2-3 Weak total correctness of a relation defined by simple recursion (version 1) 

If relation R is the least solution of the equation X = H X T | E then the following rule holds: 

there exists a family of preconditions {Ai | i ≥ 0}  
and a family of postconditions {Bi | i ≥ 0} such that 
(1) (∀ i ≥ 0) Ai  ⊆ (Hi E Ti) Bi  

(2) A     ⊆ U {Ai | i ≥ 0} 

(3) (∀ i ≥ 0) Bi  ⊆ B 

(4) A ⊆ RB 

 

Proof  Define  

Ψ.X = H X T | E 

In this case 

Ψ0.Ø = E 

Ψ1.Ø = Ψ.(Ψ0.Ø) = H (Ψ0.Ø) T | E = H E T | E 

Ψ2.Ø = Ψ.(Ψ1.Ø) = H (Ψ1.Ø) T | E = H (Ψ1.Ø) T | E = H2 E T2 | H1 E T1 | E 

Therefore, by induction, for any n ≥ 0 

Ψi.Ø = U { Hi E Ti | i=1,2,…n} | E = = U { Hi E Ti | i=0,1,…n} 

Now, by (1) and the monotonicity of composition of a relation with a set, we have for every i ≥0 

Ai  ⊆ Hi E Ti Bi ⊆ (U {Hi E Ti | 1=0,...,n} ) Bi  ⊆ (Ψi.Ø) Bi 

From this inclusion together with (2), (3) and Rule 7.7.2-2, we conclude  

A ⊆ RB 

In turn, if the inclusion is satisfied, then we set 

Ai = (Ψi.Ø) B 

Bi = B 

With this settings (1) and (3) are obviously satisfied, and (2) is satisfied because 

A ⊆ RB ⊆ U{ Ψi.Ø | i≥ 0} B = U{ (Ψi.Ø) B | i≥0} = U {Ai | i ≥ 0}  ■ 

 

Rule 7.7.2-4 Clean total correctness of a function defined by simple recursion (version 2) 

If  F is the least solution of the equation X = HXT | E where H, T, and E are functions and the domains of  H 

and E are disjoint, then the following rule holds: 

(1) (∀ Q) ( AQ ⊆ B implies A(HQT) ⊆ B ) 

(2) AE  ⊆ B  

(3) A  ⊆ FS 

(3) A ⊆ FB 
 

Proof As is easy to prove, for any H, T, and E the least solution of our equation is  



Andrzej Blikle (in cooperation with Piotr Chrząstowski-Wachtel), A Denotational Engineering of Programming Languages     182 

 

U{ Hn E Tn | n≥0 } 

and if additionally H, T, and E are functions and the domains of H and E are disjoint, then this solution is a 

function. Now, by (1), (2) and the Rule 7.6.2-4, AF ⊆ B, i.e., F is partially correct wrt A and B. Since (3) 

means that F is total on A, by Theorem 7.5-1 we can claim that it is totally correct wrt A and B. ■ 

From Rule 7.7.2-3 we can immediately derive our first rule about while-do-od instruction based on the 

observation that while (C, ¬C) do P od is the least solution of the equation 

X = [C]PX | [¬C]. 

Let then R be the least solution of this equation, i.e., 

R = ([C]P)*[¬C]. 

 

Rule 7.7.2-4 Clean total correctness for nondeterministic while-do-od  

there exists a family of preconditions {Ai | i ≥ 0}  
and a family of postconditions {Bi | i ≥ 0} such that 

(1) (∀ i ≥ 0) Ai  ⊆ ([C]P)i[¬C] Bi    
(2) A     ⊆ U {Ai | i ≥ 0} 

(3) (∀ i ≥ 0) Bi  ⊆ B 

(4) A ⊆ RB 

 

The most commonly known version of a rule for while-do-od concerns a deterministic case, and does not 

require the construction of two infinite families of conditions. It is also based on a well-known method of 

proving the halting property of a loop. First, we introduce two auxiliary concepts.  

We say that a function F : S → S has limited replicability property in a set N ⊆ S if there exists no infinite 

sequence of the form s, F.s, F.(F.s),… in N.  

A partially ordered set (U, >) is said to be well-founded, if there is no infinite decreasing sequence in it, 

i.e., a sequence u1 < u2 < … The following obvious lemma is useful in proving the limited replicability of a 

function F : S → S. 

Lemma 7.7.2-1 If there exists a well-founded set (U, <) and a function K : N ⟼ U such that for any a : N, 
F.a = !, F.a : N and 

K.a > K.(F.b)  

then F has limited replicability in N. ■ 

Now we can formulate our rule.  

 

Rule 7.7.2-4 Clean total correctness of a deterministic while-do-od loop  

For any function   F : S → S, any A,B,N ⊆ S, and any disjoint C,¬C ⊆ S 

(1) A    ⊆ N 

(2) N    ⊆ C | ¬C 

(3) N ∩ ¬C  ⊆ B 

(4) N ∩ C  ⊆ FN     (clean total correctness of F) 

(5) [C]F has limited replicability in N 

(6) A ⊆ while (C,¬C) do F od B 

Proof Assume that (1), (2), (3) are satisfied but the inclusion 

N ⊆ ([C]F)*[¬C]S. 
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does not hold. In that case, there exists s0 : N, that does not belong to  

([C]F)*[¬C]S = ([C]F)+[¬C]S | ¬C, 

and therefore s0 does not belong to ¬C. From there, by (3), s0 : N∩C, and therefore by (4), there exists s1 
such that [C]F.s0 = s1 and s1 : N. Therefore by (3)  

s1 : C | ¬C.  

Now, s1 cannot belong to ¬C, since then s0 would belong to  

[C]F[¬C]S 

which is a subset of ([C]F)*[¬C]S. Reasoning in this way, we could prove by induction that for any n ≥ 0 

there exists a sequence si : i = 0,1,…n such that s0 : N and 

si [C]F si+1 and si : N for i = 0,1,…,n 

Since F is a function, this implies the existence of an infinite sequence 

si [C]F si+1 and si : N for i = 0,1,… 

which contradicts (5).■ 
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8 LINGUA-2V — VALIDATING PROGRAMMING 

By validating programming, we shall mean a programming technique that guarantees the total-correctness of 

programs wrt program specification, the latter being created in parallel with the program’s code. This tech-

nique was already mentioned in Sec. 1.1 and its abstract mathematical foundations are described in Sec. 7. 

The present section is devoted to general rules of equipping a language from the Lingua family with validating 

tools. These rules are illustrated by examples referring to Lingua-2. 

The general idea of validating programming was sketched (without procedures) in my papers [20], [21] 

and [22] published at the turn of the decades 1970 and 1980. On that ground, I came to the conclusion that in 

order to create a language with rules that guarantee program correctness, one has to build a mathematical 

model of such a language. The next few years till the end of the decade of 1980. I devoted to the investigations 

of such models and the following 23 years (1990-2013) to run my family business (see Foreword). Therefore 

only in 2013, I have returned to my project, and the present book was the first step of it. 

This chapter gained in clarity (I hope) due to a fruitful discussion (in 2018) with my former MetaSoft-

teammate Stefan Sokołowski. Another teammate Ryszard Kubiak also contributed to this subject.  

8.1 The structure of a validating language 

Very briefly, a language of validating programming is a language of propositions called metaprograms. Each 

metaprogram is composed of two mutually nested layers: 

1. a programming layer which is a program as defined earlier, 

2. a descriptive layer which consists of pre- and post-conditions plus assertions (see Sec. 8.3) that are 

“nested” in-between instructions.   

A metaprogram is said to be correct if its programming layer is totally correct (see Sec. 7.5) wrt its pre- and 

post-condition. 

Validating programming consists in deriving correct programs from correct programs where the “initial” 

programs have to be proved correct in a traditional way. This situation is analogous to a formalised theory 

where we “derive” theorems from earlier proved theorems employing deduction rules. However, in deriving 

correct programs from correct programs, we sometimes change programs’ functionality (denotation) in pre-

serving correctness. This phenomenon will be seen in Sec. 8.5.6, where we discuss the idea of transforma-

tional programming.   

For every source language Lingua-n we may construct a corresponding language Lingua-nV of validating 

programming which contains all mechanisms of the source language plus four followings (syntactic) catego-

ries of its descriptive layer: 

1. Conditions ― the denotations of which are three-valued partial predicates on states, i.e., they may 

evaluate to tt, ff, an error, or maybe undefined (the case of looping). 

2. Specified instructions ― the denotation of which are partial functions on states (like the denotations of 

instruction) and where the descriptive layer describes the properties of the programming layer. 

3. Specified programs — which are specified instructions preceded by a declaration. 

4. Propositions ― the denotations of which are classical boolean values tt and ff; propositions are split 

into three subcategories: 
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4.1. properties that express syntactic properties of programs, e.g., that a given procedure declaration 

appears in a declaration, 

4.2. metaconditions that express the semantic properties of conditions, e.g., that a given condition is 

never false but may be undefined, 

4.3. metaprograms that express total-correctness properties of programs which they include. 

Propositions are assumed to be closed under classical boolean operators and classical quantifiers. It 

means that in constructing correct programs, and in talking about program correctness, we remain in 

the domain of classical logic. 

Contrary to our philosophy from denotations to syntax, in constructing a language of validating programming, 

we proceed from syntax to denotations. This is the consequence of the fact that this time our starting point is 

an “already existing” syntax of a source-language, which has to be a subset — or better a layer — of the 

corresponding validating language.  

8.2 Conditions 

8.2.1 Generalities about conditions 

To avoid too many technicalities, our conditions will not be defined in details. Instead, we shall only assume 

some of their properties. The description of these properties should show a way of building the category of 

conditions for each particular language from the Lingua family. 

Classes of conditions will be described and illustrated with the help of their (anticipated) concrete syntax. 

In defining their semantics, we shall use the following notation for boolean (yokeless) values: 

vt = (tt, ((‘boolean’), TT)) 

vf = (ff, ((‘boolean’), TT)).  

The syntactic category of conditions is defined by the following clause: 

con : Condition = 

 DatCon         |                        data-oriented conditions 

 DecCon        |               declaration-oriented conditions 

 SpecInstruction @ Condition |                   algorithmic conditions 

 (Condition and Condition) | (Condition or Condition) | (not Condition) | 

 (∀ Identifier: Condition) | (∃ Identifier: Condition) 

Data-oriented conditions, called simply data conditions, declaration-oriented conditions, and algorithmic con-

ditions will be discussed in details in the subsequent sections. At the general level we shall assume that the 

denotations of conditions are partial functions from states to (boolean) values or errors, which means that their 

semantics is a function: 

Sco : Condition ⟼ State → ValueE 

The partiality of the denotations of conditions is due to the fact that conditions may include data expressions. 

In the sequel we shall use the following notational conventions:  

[con] = Sco.[con] 

{con} = {sta | [con].sta = tt} 

Why this is convenient will be seen a little later. 

To gain commutativity of conjunction and alternative we assume that boolean constructors are defined in 

the Kleene’s style (see Sec. 2.9). Consequently, quantifiers will be defined accordingly:  
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∀ : Identifier x Condition ⟼ Condition 

[(∀ide: con)].sta =  

is-error.sta                  ➔ error.sta 
let 

(env, (vat, ‘OK’)) = sta 
for every val : Value,  [con].(env, (vat[ide/val], ‘OK’)) = vt ➔ vt  

there is   val : Value,  [con].(env, (vat[ide/val], ‘OK’)) = vf ➔ vf 

true                     ➔ ‘never-false’ 

The message ‘never-false’ — which is formally regarded as an abstract error — is generated in situations 

where the value 

 [con].(env, (vat[ide/val], ‘OK’)) 

is never vf, but at the same time is not always vt, i.e. if it is: 

• either vt, 

• or an error,  

• or undefined93,  

and for at least one value val it is not equal vt. The existential quantifier is defined in the following way (which 

is to satisfy De Morgan’s lows) 

∃ : Identifier x Condition ⟼ Condition 

[(∃ide: con)].sta =  

is-error.sta                  ➔ error.sta 
let 

(env, (vat, ‘OK’)) = sta 
there is  val : Value,  [con].(env, (vat[ide/val], ‘OK’)) = vt ➔ vt  

for every  val : Value,  [con].(env, (vat[ide/val], ‘OK’)) = vf ➔ vf 

true                     ➔ ‘never-true’ 

Notice that the equality 

[ (∀ide: con)].sta = vf  

holds even if for some value val, the value of con is an error and analogously in the situation where 

[ (∃ide: con)].sta = vt. 

These facts mean that quantifiers are defined according to Kleene’s philosophy rather than to that of McCar-

thy. In the case of boolean expressions, which are evaluated during program execution, Kleene’s philosophy 

was not acceptable since it would lead to the necessity of parallel computations (cf. Sec. 2.9). However, in the 

case of conditions, which are not executed, Kleene’s calculus is not only acceptable but ― in the case of 

quantifiers ― even better. This claim may be justified the by the example of a condition: 

(∃ x: 1/x > 2) 

the value of which in the calculus of McCarthy would be undefined, since it is undefined for x = 0. More on 

the consequences of that choice in [26] and [58]. 

 
93 The assumption that ‘never-false’ is issued in the case of undefinedness does not mean that undefinedness has to 

computable. This is due to the fact that condition will never be executed by programs. They will only be “proved”.  



Andrzej Blikle (in cooperation with Piotr Chrząstowski-Wachtel), A Denotational Engineering of Programming Languages     187 

 

8.2.2 Data-oriented conditions 

Data-oriented conditions describe properties of data assigned to identifiers in states. They split into two 

groups. 

In the first group, we have boolean expressions of the source language. Of course, we assume that the 

semantics of this group of conditions coincides with the semantics of data expressions of the source language. 

In the second group, we have expressions that correspond to predicates not available in the programming 

layer of the language but needed to express some specific properties of our programs. For instance, we may 

wish to claim that after the execution of a quick-sort, the resulting list is lexicographically ordered. This group 

of expressions will depend on the expected area of the application of our language. 

We shall assume that in all Lingua-nV the second group will include conditions which express the equality 

of two values: 

dae-1 = dae-2 

Here both dae-i are arbitrary data expressions. This does not mean, however, that at the level of Lingua we 

allow the comparisons of arbitrary values. Such an equality may appear only in the descriptive layer of Lin-

gua-nV, which means that dae-1 = dae-2 is a condition, but not necessarily a boolean data-expression! 

8.2.3 Declaration-oriented conditions 

The category of declaration-oriented conditions splits into two categories. In the first category we have con-

ditions which are satisfied if a given identifier is not bound in a state94: 

[ is-free(ide)].sta = not declared.ide.sta, 

 where the function declared, has been defined in the preamble to Sec. 5.1.4.  

Conditions of the second category describe properties of output states of four sorts of declarations: of data 

variables, type constants, imperative procedures, and functional procedures. We describe these conditions by 

semantic clauses, where we also show their syntax. 

 [ide is tex].sta =  

is-error.sta    ➔ error.sta 
let 

(env, (vat, ‘OK’)) = sta  
vat.ide  = ?    ➔ vf 
Ste.[tex].sta : Error ➔ Ste.[tex].sta 

let 
(dat, typ)  = Sde.[ide].sta 

typ-e   = Ste.[tex].sta  

typ = typ-e     ➔ vt 
typ ≠ typ-e     ➔ vf 

This condition describes the fact that the identifier ide has been declared as a data variable of type defined 

by the type expression tex. An example of such a condition may be: 

length is real 

or 

employee is employee-record-type 

An analogous condition of the form 

ide is-type tex 

 
94 We have one such condition for every identifier.  
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for instance 

employee is-type employee-record-type 

expresses the fact that ide has been declared as a type constant assigned to a type described by tex. At the 

level of colloquial syntax, we allow grouping similar conditions into one, as e.g., in 

x, y, z is number  or 

a, b, c is-type employee-record-type 

The third class of conditions expresses the fact that a given identifier ide has been declared as an imperative 

procedure with declaration ipd in a given state sta. Formally we define the following condition: 

 [ ide proc-with ipd ].sta = vt 

iff 

(1) sta does not carry an error, 

(2) ipd is a declaration of ide, which means that ipd is of the form  

proc ide(val LisForPar ref LisForPar) Program endproc, 

(3) there exists a (initial) state sta-ini such  

sta = Sipd.[ipd].sta-ini. 

We assume that otherwise  

[ ide proc-with ipd ].sta = vf 

Assumption (3) implies that any state of an execution of the instruction part of a program whose declaration 

includes ipd satisfies our condition. In Sec. 8.5.3 this condition will be used in building a correctness rule for 

procedure calls.  

For functional procedures, we introduce an analogous condition of the syntactic form: 

ide fun-with fpd 

A formal definition of its denotation is left to the reader. 

The last class of conditions corresponds to the function dynamically-compatible defined in Sec. 6.2.3 and 

concerning the compatibility of the denotations of formal and actual parameters. Let then fpd-v, fpd-r, apd-
v, apd-r be the list of formal-parameter denotations (value- and reference-) and the corresponding actual-

parameter denotations (value- and reference-): 

[ conformant(acp-v, acp-r, lap-v, lap-r) ].sta =  

is-error.sta                     ➔ error.sta 
let 

((tye, pre), (vat, ‘OK’))  = sta 
fpd-v        = Sfpa[fpd-v] 
fpd-r         = Sfpa[fpd-v] 
apd-v       = Sapa[apd-v] 
apd-r        = Sapa[apd-r] 

dynamically-compatible.(fpd-v, fpd-r, apd-v, apd-r).(tye, vat) = ‘OK’ ➔ vt 
true                           ➔ vf 

8.2.4 Algorithmic conditions 

Algorithmic conditions95  are sequential combinations of a declaration dec, a specified instruction sin (see 

Sec. 8.3) and a condition con, and is of the syntactic form 

 
95 Algorithmic conditions have been introduced in algorithmic logic developed at Warsaw University in the years 1970-

1990 (see [10]). 
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dec ; sin @ con  

Its semantics is the following: 

[ dec ; sin @ con ] = Sde.[dec] ● Ssi.[sin] ● [con] 

As we see, the logical value of a condition dec ; sin @ con in a state sta equals the value of con in the 

state Sde.[dec] ● Ssi.[sin].sta, i.e. in the terminal state of the execution of sin that starts with sta. As 

follows form investigations of Sec. 7.5, sin @ con is the weakest precondition that guarantees that the exe-

cution of sin terminates with a state that satisfies con. Notice also that con is an arbitrary condition, and, 

therefore, may be an algorithmic condition as well. 

Algorithmic conditions, similarly as data-conditions, may evaluate to non-boolean values, and for some 

states may be undefined, which correspond to infinite evaluations.   

8.3 Specified instructions 

Intuitively speaking specified instructions or just specinstructions are instructions with nested assertions. The 

later describe properties of states intermediate in the executions of these instructions. Their syntax is defined 

by the following clause 

sin : SpecInstruction =   

Instruction                    | 

asr Condition rsa                 |  

if DatExp then SpecInstruction else SpecInstruction fi  | 

if-error DatExp then SpecInstruction fi       | 

while DatExp do SpecInstruction od          | 

SpecInstruction ; SpecInstruction 

As we see, specinstructions contain all “usual” instructions and additionally instructions that are called asser-

tion, and are of the form 

asr con rsa, 

where con is an arbitrary condition.  

The denotations of specinstructions belong to the same domain as the denotations of instructions, hence 

their semantics is a function: 

Ssi : SpecInstruction  ⟼ State → State 

This function is defined in the following way: 

Ssi.[ins] = Sin.[ins]   for every instruction ins : Instruction 

Ssi.[asr con rsa].sta =  

 is-error.sta  ➔ sta 
 [con].sta = ?  ➔ ? 

[con].sta =vt   ➔ sta 

 true     ➔ sta ◄ ‘assertion-not-satisfied’ 

The semantics of specinstructions, which are instructions, coincide with the semantics of instruction. In the 

case of assertions, if their conditions hold, then the state remains unchanged, and otherwise, an error message 

is generated. Notice that the error message ‘assertion-not-satisfied’ will appear in two situations: 

1. when the value of the condition is vf, 

2. when the value of the condition is an error. 
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For the remaining four clauses, our semantics is defined analogously to the semantics of instructions. 

Notice that if a metaprogram is correct, then all assertions (if any) that appear in the program must be 

satisfied in the course of any execution whose initial state satisfies the precondition. This statement follows 

from two facts96: 

1. every non-satisfied assertion generates an error message, 

2. every condition evaluated in an error-carrying state generates an error message.  

The described syntax and semantics of specinstructions constitute a fundament for the definitions of program-

construction rules. In this context, assertions describe properties of states that appear in the course of program 

execution and may indicate which program transformations are applicable to that program. 

Sometimes assertions may be satisfied on a certain “interval” of successive atomic instructions (i.e. assign-

ments and procedure calls), possibly with the exclusion of a certain subinterval of this interval. In such a case, 

in order to avoid repeating the same assertion many times between successive instructions, we use two collo-

quial notational abbreviations of the form 

asr con: sin rsa                                (*) 

off sin on                                    (**) 

The first of them corresponds to an instruction resulting from sin by the insertion of asr con rsa between 

any two atomic instructions with the exclusion of each exclusion-interval and each error-handling instruction. 

The specinstruction (*) will be called the on-range of con, and we shall also say that in sin the condition 

con has been set-on.  

The colloquialism (**) intuitively indicates that if sin is a part of an on-range of a (larger) specinstruction, 

then within sin all previously set-on conditions do not need to be satisfied97.  

Summing up, both (*) and (**) are not specinstructions but just notational conventions. They will be 

formalized as colloquialisms, i.e., by an appropriate restoring transformation. Consequently, they do not ap-

pear in concrete syntax. Notice that the specinstruction 

asr con: sin rsa 

cannot be given a denotational semantics, since for example two following specinstructions: 

asr x > 0: 

  x := x 

rsa 

asr x > 0: 

  x := -x ; x := -x 

rsa 

have different denotations, although the denotations of their conditions and instructions are identical.  

In this situation (*) and (**) have to be treated as a colloquialism. The corresponding restoring transfor-

mation is an identity function for all specinstructions without on-ranges of conditions and otherwise is defined 

by structural induction. 

We start from the case where an on-rage is an (ordinary) instruction. Since that case requires a structural 

induction again, we start from an assignment: 

RT.[ asr con: ide := dae rsa] = 
 asr con rsa: ide:= dae; asr con rsa 

For yoke-assignments and procedure calls, the transformation is defined analogously. Next case is an error-

handling instruction where the rule is similar to the former: 

 
96 These two facts follow from the semantics of conditions which has been designed under the assumption that Lingua-

2V we do not deal with error elaboration.  
97 For the sake of simplicity I assume that in the off-on region all previously activated conditions do not need to be 

satisfied. An alternative would be, of course, a off-on clauses which indicates a particular condition to be off, but this 
more flexible form is left for future investigations. 
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RT.[ asr con: if-error dae then ins fi rsa] = 
asr con rsa; if-error dae then ins fi ; asr con rsa 

The remaining subcases with ordinary instruction are defined in the following way: 

RT.[asr con: if dae then ins-1 else ins-2 fi rsa] = 
asr con rsa; 

if dae  

then RT.[asr con ins-1 rsa]  

else RT.[asr con ins-2 rsa]  
fi;  

asr con rsa 

 

RT.[asr con: while dae do ins od rsa] = 
asr con rsa; 

while dae do RT.[asr con: ins rsa] od; 
 asr con rsa 

 

RT.[asr con: ins-1 ; ins-2 rsa] =  
asr con rsa; 

RT.[asr con: ins-1 rsa]; 
asr con rsa; 

RT.[asr con: ins-2 rsa] 
 asr con rsa 

 

RT.[asr con: if-error dae then ins fi rsa] = 
 asr con rsa; 

if-error dae then RT.[asr con: ins rsa] fi; 
asr con rsa; 

Now we have to consider the case where the on-range is a specinstruction which is not an instruction.  

RT.[asr con off ins on rsa] = ins 

As we see the assertion does not “penetrate” the instruction closed by the exclusion-brackets.   

RT.[asr con-1: asr con-2 rsa rsa] = 
 asr con-1 and con-2 rsa 

RT.[asr con-1: asr con-2: sin rsa rsa] = 

 RT.[asr con-1 and con-2: sin rsa] 

The remaining cases connected to structured specinstructions are defined in a way analogous to the corre-

sponding ordinary structured instructions. 

The denotation of a specified program is defined as a sequential composition of the denotation of its dec-

laration with the denotation of its specified instruction: 

Ssp : SpecProgram  ⟼ State → ValueE 

Ssp.[dec ; sin] = Sde.[dec] ● Ssi.[sin] 

8.4 Propositions 

Propositions split into four classes: 
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• syntactic propositions ― which describe properties of the syntax of programs and of their 

           components, 

• metaconditions   ― which describe semantic properties of conditions, 

• metainstructions   — which describe semantic properties of instructions, 

• metaprograms   ― which describe the semantic properties of programs. 

Contrary to conditions, whose values are boolean composites or errors, or may be undefined, the values of 

propositions may be only tt and ff. In executing programs, we evaluate three-valued partial predicates, 

whereas, in the descriptions of programs, we remain at the level of classical logic. 

Similarly, as for conditions ― and for the same reasons ― the model of propositions is built from syntax 

to denotations. 

8.4.1 Syntactic propositions 

Syntactic propositions describe the syntactic properties of programs and their components. Below a few typi-

cal examples of such propositions.  

IS-CORRECT(dec)        ― no identifier has been declared twice in dec,  

ipd IS-PRO-DEC-OF ide IN dec ― ipd is a procedure’s declaration of ide in dec 

fpd IS-FUN-DEC-OF ide IN dec ― fpd is a function’s declaration of ide in dec 

ide NOT-IN dec        ― ide has not been declared in dec  

The names of predicates that correspond to syntactic proposition are written in capital letters to distinguish 

them from operators corresponding to conditions. E.g. whereas 

ipd IS-PRO-DEC-OF ide IN dec 

is simply true or false, the value of the condition 

ide proc-with ipd  

may be vt or vf, depending on a state where it is evaluated.  

8.4.2 Metaconditions 

Metaconditions describe such properties of conditions that refer to their denotations. They do not belong to 

the syntax of Lingua-2V but to the level of MetaSoft, where we talk about programs. In order to define them 

we introduce a new notation: 

{con} = {sta : [con].sta = vt} 

Metaconditions are created by means of four constructors which we shall call metapredicates: 

 , ⊑ ,  , ≡ : Condition x Condition ⟼ Proposition  

The denotations of metaconditions are classical logical values tt and ff and metapredicates correspond to bi-

nary relations between conditions:  

con-1  con-2  iff {con-1} ⊆ {con-2}         weaker/stronger than; metaimplication 

con-1 ⊑ con-2  iff [con-1] ⊆ [con-2]             less/more defined than 

con-1  con-2  iff {con-1} = {con-2}                        weakly equivalent 

con-1 ≡ con-2  iff [con-1] = [con-2]                   strongly equivalent 
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In the first case we also say that con-2 is weaker than con-1 and in the second that  con-2 is wider defined 

than con-1. The following rather obvious relations hold between metapredicates98: 

con-1 ≡ con-2   is equivalent to (con-1 ⊑ con-2 and con-2 ⊑ con-1) 

con-1   con-2   is equivalent to (con-1  con-2 and con-2  con-1) 

con-1 ≡ con-2    implies    con-1  con-2 

con-1 ≡ con-2   implies     con-1 ⊑ con-2 

con-1  con-2   implies     con-1  con-2 

It is important to understand the difference between three implications that belong to three different logical 

levels 

1. implies : Condition x Condition ⟼ Condition   — syntactic constructor, 

2.     : Condition x Condition ⟼ {tt, ff}    — metaimplication, 

3. implies  : {tt, ff} x {tt, ff}     ⟼ {tt, ff}    — MetaSoft implication 

The first of them, given two conditions con-1 and con-2 constructs a third condition written as con-1 

implies con-2. 

The second is used to describe the relationship between the two conditions. 

The third belongs to the metalevel of MetaSoft, where we can talk about the properties of metaconditions, 

and about the relationships between them.  

Despite substantial differences in the natures of these three implications, there is a certain relationship 

between them: 

(con-1 implies con-2) ≡ TT  implies  con-1  con-2. 

Indeed let sta:{con-1}, which means that [con-1].sta = vt. If now [(con-1 implies con-2)].sta = vt 

and [con-1].sta = vt, then [con-2].sta = vt which means that sta:{con-2}. On the other hand: 

con-1  con-2 does not imply (con-1 implies con-2) ≡ TT. 

Indeed, despite that the metaimplication  √𝑥2
 > 4  x > 3 holds, the condition 

√𝑥2
 > 4 implies x > 3 

is undefined for x < 0.  

It is important to note that using metaimplication, we can easily express the property of total-correctness 

of an instruction ins wtr a precondition pre and a postconditions post.  

pre  ins @ post  ― total correctness 

We can also describe the concept of a strong invariant of an instruction: 

con  ins @ con   ― strong invariant 

Strong invariants are used in correctness-proofs of total correctness of while loops. Now let us examine a few 

examples99: 

x>0 and  √𝑥2
 > 2 ≡    x > 4 

     √𝑥
2

 > 2   x > 4  but ≡ does not hold 

    √𝑥2
 < 2 ⊑   x < 4  but neither ≡ nor  holds 

 
98 It is worth noticing that on the ground of our non-classical calculus of conditions we have two concepts of satisfiability 

― strong satisfiability (con ≡ TT) con is always true, and weak satisfiability (con ⊑ TT ) con is never false. Readers 
interested in logics based on these concepts are referred to [58]. 

99 We assume that the square root of a negative number is undefined. 
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    √𝑥2
 > 4    x > 3   but neither  nor ⊑ holds 

Metapredicates play an important role in our future techniques of the development of correct metaprograms. 

For instance (anticipating the investigations of Sec. 8.4.3), if in a correct metaprogram we replace: 

• its pre- and postconditions, and its assertions by weakly equivalent ones, 

• its boolean expressions by strongly equivalent ones, 

then the new program is correct as well.  The following lemmas are useful in program development (proofs 

and more investigations in [24]).  

Lemma 8.4.2-1 Relations ≡ and  are both equivalences, i.e., they are reflexive, symmetric, and transitive. 

■ 

Lemma 8.4.2-2 Strong equivalence is a congruence wrt and, or and not, i.e., the replacement of a 

subcondition of a condition by a strongly equivalent one result a condition strongly equivalent to the initial 

one. ■ 

Lemma 8.4.2-3 Weak equivalence is a congruence wrt and and or.  ■ 

Weak equivalence is not a congruence wrt negation since  

con-1  con-2   does not imply   not con-1  not con-2 

For instance, although 

√𝑥2
 > 2  x > 4    

is satisfied, the metacondition 

√𝑥2
 ≤ 2  x ≤ 4  

is not, since for x = −1 the right-hand-side equation evaluates to vt, but on the left-hand side, we have an error.  

Lemma 8.4.2-4 The operators and and or are strongly associative, i.e. 

(con-1 and con-2) and con-3 ≡ con-1 and (con-2 and con-3) 

(con-1  or con-2)  or con-3 ≡ con-1  or (con-2  or con-3) 

Of course, they are also weakly associative since strong equivalence implies weak equivalence. 

Lemma 8.4.2-5 The operator and is strongly left-hand-side distributive wrt to or and vice versa, i.e.. 

con-1 and (con-2 or con-3)  ≡ con-1 and con-2)or  (con-1 and con-3) 

con-1 or  (con-2 and con-3) ≡ con-1 or con-2) and (con-1 or con-3) 

However, both operators are not strongly right-hand-side distributive. Indeed (not quite formally written): 

(vt or ee) and vf = vf   but   (vt and vf) or (ee and vf) = ee 

(vf and ee) or vt = vt   but   (vf or vt) and (ee or vt) = ee                       (8.4.2-1) 

Lemma 8.4.2-6 The operator and is weakly left-hand-side distributive wrt or i.e. 

(con-1 or con-2) and con-3   (con-1 and con-3) or (con-2 and con-3) 

However, or is not even weakly left-hand-side distributive wrt and which can be seen in (8.4.2-1). 

Lemma 8.4.2-7 The de Morgan’s laws for and and or and for the negation of quantifiers are satisfied with 

strong equivalence.  ■ 

Lemma 8.4.2-8 Conjunction is weakly commutative. 

con-1 and con-2   con-2 and con-1 ■ 

However, conjunctions are not strongly commutative, and the alternative is not even weakly commutative, 

since: 
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vt or ee = vt   but   ee or vt = ee 

Lemma 8.4.2-9 If 

con-1  con-2 

then 

con-1 and con-2  ≡ con-1  ■ 

Besides the two-argument metapredicates, we also define three-argument metapredicates which will be used 

in the development of correct programs: 

con-1 ≡ con-2  whenever con means  con and con-1 ≡  con and con-2  

con-1  con-2  whenever con means  con and con-1  con and con-2 

In both cases, we say that con constitutes a logical context or simply a context for the equivalence which it 

follows. We shall also say that the equivalence con-1 ≡ con-2 is satisfied under the condition con and 

analogously for a weak equivalence. The following metapredicates are satisfied: 

n > x2 ≡ √𝑛
2

 > x  whenever (n ≥ 0 and x ≥ 0) 

n > x2  √𝑛2
 > x whenever x ≥ 0 

The context is usually a condition in whose range we want to replace one condition by another one. 

All presented above considerations were published by myself in the decade 1980 in [22] and [26], and the 

development of these ideas towards three-valued deductive theories was investigated in a paper [58] written 

together with Beata Konikowska and Andrzej Tarlecki.  

8.4.3 Metainstructions 

Metainstructions describe the properties of instructions. At the moment we introduce just one metainstruction 

of the form 

if dat then sin fi limited-replicability in con 

which is satisfied iff 

[{dat}] Ssi.[sin] has limited replicability in {con}. 

For “limited replicability,” see Sec. 7.7.2. 

8.4.4 Metaprograms 

Metaprograms are propositions with the following syntax:  

mpr : MetaProgram =  

pre Condition :  

Declaration ; 

  SpecInstruction  

post Condition100  

Metaprograms express total correctness of programs (as defined in Sec. 7.7). The semantics of metaprograms 

is a function: 

Smp : MetaProgram ⟼ {tt, ff} 

defined as follows: 

 
100 Notice that in this syntax the keywords pre and post and the colon play the role of separators.  
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Smp.[pre prc : dec ; sin post poc] = tt 

iff  

{prc}   ⊆   Sde.[dec] ● Ssi.[sin] ● {poc}   or equivalently            (8.4.3-1) 

prc      dec ; sin @ poc 

Notice that both, the precondition, and the postcondition may be arbitrary conditions, i.e. in particular algo-

rithmic conditions.  

If the denotation of a metaprogram is tt, then we say that this metaprogram is totally correct or simply 

correct. 

It should be emphasized that our notion of correctness corresponds to so-called total correctness with clean 

termination as defined in [23]. In contrast to total correctness considered by other authors — such as, e.g., in 

[8], [44], [45] or [55], where programs never generate errors (which is not very realistic) — in our case errors 

may happen, but in correct programs, they do not.  

We will say that under a condition con a data expression dae evaluates cleanly, if the following metaim-

plication is satisfied: 

con  dae=dae 

This metaimplication says that for every state that satisfies con, the evaluation of dae terminates, and does 

not generate error.  

In the sequel of the book, “correctness” means “total correctness”, and whenever we want to talk about 

partial correctness, we will express it explicitly. In the latter case, we shall use the following syntax: 

par-pre prc : dec; sin par-post poc, 

which means that  

{prc}●Sde.[dec]●Ssi.[sin]⊆ {poc} 

In this case, there is no equivalent formulation in terms of metaconditions since we have nothing like a “left-

sided” @ operation.  

A few simple but useful lemmas may be formulated about the correctness of metaprograms.  

 

Lemma 8.4.3-1 If  

pre prc : dec ; sin post poc  

is correct then in any execution of dec;sin that starts with a state which satisfies prc: 

1. neither dec nor sin nor poc generates an error, 

2. states in {prc} do not bind (refer to) identifiers that are (going to be) declared in dec,  

3. all states are adequate for dec, 

4. all assertions in sin are satisfied, 

5. the terminal state does not carry an error. 

Statement 5. follows from the fact that if a state carries an error, then the evaluation of a condition in such a 

state generates an error.  

 

Lemma 8.4.3-2 If  

pre con-pr : dec ; sin post con-po  
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is correct and sin-1 has been created from sin by the removal of an arbitrary number of assertions or 

assertion-declarations, then the program 

pre con-pr : dec ; sin-1 post con-po  

is correct as well.     ■ 

 

Lemma 8.4.3-3 The replacement in a correct metaprogram its pre- or post-condition or a condition in an 

assertion by a weakly equivalent condition, does not violate the correctness of the program.   ■ 

 

The proof for pre- and post-conditions is obvious. For assertions the proof follows from the fact that if 

con-1  con-2 i.e. {con-1} = {con-2} 

then 

[con-1].sta =vt  iff  [con-2].sta =vt 

In particular, this lemma implies that on the level of conditions (but not of boolean expressions of the pro-

gramming layer!) we can apply all the lemmas of Sec. 8.4.2 that concern weak equivalence.  

 

Lemma 8.4.3-4 The replacement in a correct metaprogram any boolean expression dae in an instruction or 

assertion by a boolean expression dae-1 that is stronger defined (i.e., such that dae ⊑ dae-1) does not 

violate the correctness of the program. ■ 

 

If the source program is correct, then none of its boolean expressions generates an error, and wherever dae is 

defined dae-1 is also defined and has the same value. ■ 

Now we assume a convention, which is similar as in “everyday mathematics”. Whenever we write a prop-

osition of the form 

pre con-pr : dec ; sin post con-po 

we mean that this proposition is satisfies, i.e. the corresponding metaprogram is correct. This convention is 

analogous to writing x>2, whenever we want to say the expression “x>2” is satisfied.  

8.4.5 Jaco de Bakker paradox in Hoare’s logic  

As was noticed by Jaco de Bakker (p. 108, Sec. 4 in [5]) and later commented by Krzysztof Apt in [4], on the 

ground of Hoare’s logic one can prove the formula: 

pre true: a[a[2]] := 1 post a[a[2]] = 1 

which for same arrays a is not true. To show that consider an array: 

a = [2,2]. 

In that array 

a[2] = 2    

hence the execution of the assignment 

a[a[2]] := 1  

means the execution of 

a[2] := 1 

which means that the new array is a = [2,1], and therefore a[a[2]] = a[1] = 2.  
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Let us observe, however, that Hoare’s problem results neither from having arrays in a language nor from 

the admission of expressions like a[a[2]], but from a tacit assumption that whenever such an expression ap-

pears on the left-hand-side of an assignment, it should be treated as a variable. As a matter of fact, for many 

years, programmers used to talk about “subscripted variables” (in Algol 60 [71]) or about “indexed variables” 

(in Pascal [56]).  

De Bakker’s problem with Hoare’s logic lies in the imperfect understanding of the meaning (semantics) of 

array variables101. In our language de Bakker’s paradox does not appear since the instruction of the form: 

a.(a.2) := 1 

would be syntactically incorrect. In that place, we write 

a := change-arr a at a.2 by 1 ee 

or colloquially 

a := change-arr a by a.2 := 1 ee 

Now on the ground of constructions rules of Sec. 8.5.2 we can easily derive the following correct metapro-

gram: 

pre a is arr-type number and a.1=2 and a.2=2 

a := change-arr a by a.2 := 1 ee 

post a.1=2 and a.2=1  

8.5 Constructing correct metaprograms 

8.5.1 The role of declarations in the derivation of correct metaprograms 

A derivation of a correct metaprogram of the form 

pre prc: dec; sin post poc 

can be split into the derivation of two metaprograms: 

pre prc:  

dec;  

skip-i  

post prc and poc-dec  

 

pre prc and poc-dec:  

skip-d;  

sin  

post poc  

If dec is correct (no identifier is declared twice in it, see Sec. 8.4.1) then the derivation of the first program 

is trivial since the condition poc-dec should be simply a conjunction of declaration-oriented conditions (see 

Sec. 8.2.3) of the form:  

ide is tex  

ide is-type tex  

ide proc-with ipd  

ide fun-with fpd 

 
101 In the denotational model described by M. Gordon in [53] array-variables or indexed-variables are admitted on the 

cost of a rather substantial complication of the model by distinguishing between left-values of expressions (locations) 
and right-values of expressions (values). In states values are assigned to locations and locations to identifiers. 
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The fact that the precondition prc appears in the postcondition of the first program follows from the simple 

fact that prc cannot include identifiers declared in the declaration. Indeed, if that were the case, the execution 

of dec would generate an error, because the satisfaction of a condition that includes ide implies that ide 

must have been declared “earlier”, and no identifier may be declared twice.  

In any case, since the first of the two program-derivation steps is trivial, in the description of program 

construction rules we can concentrate on the case of programs with trivial declarations. 

Note also that poc-dec may be implicit in prc. For instance, if condition x>0 is satisfied in a given 

state, where > denotes a relation on integers, then x must be bound in that state to an integer value, and 

therefore 

x is integer  

must be satisfied as well. Consequently: 

x > 0 ⟹ x is integer 

and therefore 

(x is integer and x>0) ⟺ x>0.  

It means that ‘x is integer’ in a precondition, postcondition or assertion may be replaced by ‘x>0’ 

without violating the validity of a program. 

Note that strong equivalence does not hold in this place since if x has not been declared as an integer, then 

x is integer is false, whereas x>0 raises an error. 

8.5.2 Basic rules 

In the rules that follow, we tacitly assume that all metavariables such as prc, dec, sin, poc, etc. are 

bound by general quantifiers that stand before metaimplications denoted by the diagrams. Since we shall re-

strict our investigations to programs with trivial declarations, we shall omit writing skip-d in our metapro-

grams. 

Let us start with simple rules that follow immediately as consequences of Rule 7.7.1-3, Rule 7.7.1-4, and 

Rule 7.7.1-5. We recall that our rules are, in fact, implications from the level of MetaSoft rather than proof 

rules, as understood in Hoare’s logics (cf. [55],  [4], [5], [6]).  

 

 Rule 8.5.2-1 Strengthening precondition  

pre prc : sin post poc 

prc-1  prc 

pre prc-1 : sin post poc 

 

Rule 8.5.2-2 Weakening postcondition 

pre prc : sin post poc 

poc  poc-1 

pre prc : sin post poc-1 
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Rule 8.5.2-3 Conjunction of conditions 

pre prc-1 : sin  post poc-1 

pre prc-2 : sin  post poc-2 

pre (prc-1 and prc-2) : 

 sin   

post (poc-1 and poc-2) 

  

Now we can pass to our main rules concerning assignments and structured instructions.  

 

Rule 8.5.2-5 Assignment102 

The following program is correct 

pre (ide:=dae) @ poc : 

ide:=dae 

post poc   

 

This rule is, in fact, a tautology. Notice that if a state satisfies the precondition 

(ide:=dae)@ poc 

then, by the definition of @, the execution of 

ide:=dae  

must terminate without an error, and the terminal state must satisfy poc.  

Despite its “tautological simplicity”, our rule is quite useful, and in fact necessary, in deriving correct pro-

grams. Consider the following example of a program-generation on the ground of this rule. First, we generate 

a tautological metaprogram: 

pre x:=y+1 @ 2*x<10 

 x := y+1 

post 2*x<10 

Such a program is, of course, quite trivial, but we can change it into a “less trivial” form by observing that the 

following weak equivalence is satisfied103: 

x:=y+1 @ 2*x<10    2*(y+1)<10  

Basing on this equivalence, we can apply Lemma 8.4.3-3 to claim the correctness of the program 

pre 2*(y+1)<10 

 x := y+1 

post 2*x<10 

thus eliminating x from precondition104. 

 

 

 
102 In a Hoare’s style (cf. [5] p.6) the precondition of this rule is usually written in the form poc[ide/dae] which denotes 

dae with all free occurrences of ide replaced by dae. With such a formulation we have to inductively define the re-
placement of an identifier by an expression. In our approach we “shift” this task to the stage of program construction.  

103 Here we in fact have a strong equivalence but to perform our transformation we need only a weak equivalence.  
104 Here we see an example of a replacement of x in 2*x<10 by y+1.  
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Rule 8.5.2-6 Sequential composition of a program with an instruction105 

pre prc-1: sin-1 post poc-1 

pre prc-2: sin-2 post poc-2 

poc-1  prc-2 

pre prc-1: sin-1; sin-2 post poc-2 

pre prc-1: sin-1; asr poc-1 rsa; sin-2 post poc-2 

pre prc-1: sin-1; asr prc-2 rsa; sin-2 post poc-2 

 

Our rule follows directly from Rule 7.7.1-1. It is also to be pointed out that the vertical arrow goes only top-

down since we have skipped existential quantification of poc-1 and pre-2 (cf. Rule 7.7.1-1), which in the 

case of conditions (syntactic entities), rather than sets of states, would not have much practical sense. 

Another important observation is that to construct each of our target programs, we have to perform two 

program constructions and one proof of a metaimplication. As we are going to see, this is a typical situation. 

Such metaconditions are, on the one hand (usually) not very “sophisticated” mathematically, but on the other 

— may include quite a lot of variables. The first property makes them provable by automatic provers, and the 

second means that proving them “by hand” may be practically unfeasible. In other words, an automatic theo-

rem prover should be an element of a programmer’s environment in each Lingua-nV. 

 

Rule 8.5.2-7 Conditional branching if-then-else-fi 

pre (prc and dae) : sin-1 post poc 

pre (prc and not dae) : sin-2 post poc 

prc  (dae or(not dae)) 

pre prc : if dae then sin-1 else sin-2 fi post poc 

 

This rule follows directly from Rule 7.7.1-2. In this case, the implication is two-directional since we do not 

need to construct any intermediate assertion. It is also worth noticing that the metacondition 

prc  (dae or (not dae))  

means that whenever prc is satisfied, the data expression dae is either vt or vf, i.e.  

1. is defined (does not loop),  

2. does not generate an error,  

3. generates a boolean value.  

Notice that in two-valued predicate calculus, this metaimplication would be a tautology. Consequently, when 

one uses Hoare’s logic of programs [55] which is based on the classical two-valued logic, this metaimplication 

is omitted, which leads to incorrect conclusions106. To illustrate the problem consider the following program; 

 

pre x ≥ 0 : 

 if 1/x > 0 then x:=x else x:=-x fi 

post x > 0 

which aborts for x=0, although in Hoare’s logic it can be proved totally correct.  

 
105 In this rule declaration appears only in the first program since it must always appear at the beginning of a program.  
106 In the historical paper [55] of C.A.R Hoare a rule for conditional branching is not considered, but it is implicit in a 

paper by K. Apt [4]. Originally it is formulated there for partial correctness on p. 433, but is later followed by the following 
comment on p. 441: “It is clear that the only proof rule of Hoare which introduces a possibility of nontermination is the 
while rule; so to deal with total correctness that rule has to be changed”. 
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 Rule 8.5.2-8 Loop while-do-od 

(1) pre inv and dae : sin post inv 

(2) asr dae rsa ; sin limited-replicability-in inv 

(3) prc  inv 

(4) inv  (dae or (not dae)) 

(5) inv and (not dae))  poc 

pre prc : while dae do sin od post poc 

 

This rule follows from Rule 7.7.2-5. To use it in the process of program construction, we have to: 

1. construct a correct metaprogram (1) that includes the future instruction sin of the loop; this also 

requires inventing the invariant inv of the loop,  

2. prove the limited replicability (4) of  asr dae rsa ; sin; this requires inventing a well-founded 

set and a function that maps states into the elements of that set.  

3. prove three metaimplications (3), (4), and (5); notice that (5) is absent in Hoare’s logic, 

The metaprogram (3) expresses the fact that the satisfaction of the invariant in conjunction with dae in the 

precondition guaranties clean termination of ins. Of course, in proving the halting property of ins, we may 

use Lemma 7.7.2-1 or another similar vehicle.  

In the end of this section let us consider an example of a derivation of the following metaprogram, where 

nnint denotes a predefined type non-negative integers: 

pre n,m is nnint and x=n and k=1:  — precondition prc  

while x≠0             — data expression dae 
do  

k := k*m ;          — the beginning of sin 

   x := x-1           — the end of sin 
  od ; 

post k=m^n              — postcondition poc 

It is implicit in the precondition that n, m , x, and k  have been declared as numeric variables. We should also 

note that in our metaprogram, the values of n and m do not change during program execution. We shall call 

them, therefore, constants. Using these variables, we can describe the relationship between the initial values 

of n and m, and the terminal value of k. 

To derive our metaprogram using Rule 8.5.2-4, we have in the first place to come up with a loop invariant. 

In this case, it is an easy job. We set it as 

n,m, is nnint and k=m^(n-x) 

Now we have to prove correct, or derive, metaprograms (1), and to prove (2) to (5): 

(1) pre inv and dae : sin post inv 

(2) asr dae rsa ; sin limited-replicability-in inv 

(3) prc  inv 

(4) inv  (dae or (not dae)) 

(5) inv and (not dae)  poc 

In the general case, steps (1) and (2) are most difficult since, in (1), we have to “invent” an invariant of our 

loop, and in (2), we have to prove halting property which requires the choice of a well-founded set. In our 

example, however, both steps are fairly easy. 

ad (1). The construction of the program  
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pre inv and x≠0: k:=k*m; x:=x-1 post inv 

can be done by combining sequentially (Rule 8.5.2-6) two obviously correct programs 

pre n,m, is nnint and k=m^(n-x) and x≠0:  

k:=k*m  

post n,m, is nnint and k=m^(n-x+1) 

 

post n,m, is nnint and k=m^(n-x+1):  

x:=x-1 

post n,m, is nnint and k=m^(n-x) 

ad (2). The termination of the loop is obvious because the loop runs for x from n to 0. Formally we can apply 

Lemma 7.7.2-1, and as a well-formed set, assume the set of nonnegative integers with strict inequality “<”. 

ad (3). The metaimplication   

n,m is nnint and x=n and k=1  n,m, is nnint and k=m^(n-x)  

is obvious  

ad (4). The metaimplication   

n,m, is nnint and k=m^(n-x) (x=0 or x≠0)  

follows from the fact that the satisfaction of k=m^(n-x)guarantees that x has been declared as a number. 

(5) The satisfaction of  (n,m, is nnint and k=m^(n-x) and x=0)  k=m^n is obvious.  

8.5.3 Imperative procedures 

So far, our construction rules were used to build programs with expected properties. To be more specific, 

given some expectation about future program expressed by a precondition prc and a postcondition poc, we 

had to build an instruction ins such that pre prc: ins post poc is correct. 

In the case of procedures our task is more complicated. Now, the given expectations are expressed by a 

metaprogram with a procedure call: 

pre prc-call : 

call DoIt(val acp-v ref acp-r)                   (8.5.3-1) 

post poc-call  

and our task consists in building a declaration 

proc DoIt(val fop-v ref fop-r) 

body                                         (8.5.3-2) 

end proc  

such that the metaprogram with the call is correct. This means in turn that we have to build a metaprogram of 

the form 

pre prc-body:   

 body  

post poc-body. 

such that (8.5.3-1) will be satisfied. In this situation, let us try to figure out what relationship should occur 

between the specification of the call, i.e., prc-call and poc-call on the one hand, and the specification 

of the body, i.e., prc-body and poc-body, on the other. 

First, observe that the precondition of the call, which describes the future programming context of the call, 

should guarantee that DoIt has been declared in the hosting program of the call. This requirement can be 

expressed by the metaimplication 

prc-call  DoIt proc-with ipd. 
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The precondition of the call must also guarantee that passing actual parameters to formal parameters will be 

successful, i.e.: 

prc-call  conformant(fop-v, fop-r, acp-v, acp-r)  

The next question is, what should we expect about prc-body and poc-body to make (8.5.3-1) correct? 

Here we have another two metaimplications.  

The first expresses the fact that whenever the precondition of the call is satisfied, the precondition of the 

body is satisfied, provided that the values of actual parameters are passed to formal parameters. Formally: 

prc-call  prc-body[fop-v/acp-v, fop-r/acp-r] 

Here prc-body[fop-v/acp-v, fop-r/acp-r] denotes the condition prc-body, where the identi-

fiers of formal parameters were replaced by the identifiers of actual parameters107.  

In turn, the satisfaction of the postcondition of the body must guarantee that, after the execution of the call, 

its postcondition is satisfied, provided that the values of formal reference-parameters were passed to actual 

reference-parameters: 

poc-body  poc-call[acp-r/fop-r] 

Putting all our arguments together, we have the following rule: 

 

Rule 8.5.3-1 Building a declaration of an imperative procedure 

(1)pre prc-body : body post poc-body 

(2)prc-call  DoIt proc-with ipd 

(3)prc-call  conformant(fop-v, fop-r, acp-v, acp-r) 

(4)prc-call  prc-body[fop-v/acp-v, fop-r/acp-r]  

(5)poc-body  poc-call[acp-r/fop-r] 

pre prc-call 

  call DoIt(val acp-v ref acp-r)  

post poc-call 

Here a comment is needed since our rule seemingly does not include the case where DoIt may be recursive. 

Formally there is no such reference indeed, but if DoIt is called in body (whether directly or indirectly), 

then in proving (1) we shall have to cope with recursion. This issue is investigated in Sec. 8.5.4. 

Now, let us analyse an example of an application of our rule. Let nnint is a predefined yokeless type of 

non-negative integers, and assume that our goal consists in building a declaration of a procedure Power, 

whose call should satisfy the following proposition: 

pre Power proc-with ipd and a,b,c ≥ 0:    — prc-call 

call Power(val a,b ref c)                       (*) 

post c=b^a.       — poc-call 

Notice that since a and b are value parameters, the postcondition  

c=b^a 

 
107 A formal definition of this transformation requires a rather laborious construction by structural induction wrt the gram-

mar of conditions, which I omit at that stage. It is worth noticing in this place that if we would let in Lingua actual 
parameters to be arbitrary data expressions, rather than variables, then the definition of the transformation would be 
even more complicated. 
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describes the value of c after the execution of the call where b and c have values assumed before the call. In 

contrast to the example which follows Rule 8.5.2-8, now we do not need to introduce any constants to describe 

the relationship between the input state and the output state of the call.  

As a starting point in the development of future procedure declaration, we take the program developed in 

Sec. 8.5.2: 

pre m,n≥0 and x=n and k=1:   

while x≠0 do k:=k*m; x:=x-1 od                  (**) 

post k=m^n 

Variables n and m are obvious candidates for formal value parameters, k is a candidate for formal reference 

parameter, and x may play the role of a local variable. All four variables may be given the same type nnint 

(non-negative integer). The header of our procedure should be, therefore, 

Power(val m,n nnint, ref k nnint) 

Now, we have to modify (**) in such a way that its precondition prc-call metaimplies the precondition of 

the future body with a,b,c replaced by n,m,k, respectively. This modification leads to prc-body of the 

form 

m,n,k ≥ 0 

which is due to the metaimplication 

(Power proc-with ipd and m,n,k ≥ 0)  (m,n,k ≥ 0) 

This metaimplication will guarantee the satisfaction of (4) of the rule. Since the while loop of the body must 

get a state where  

m,n≥0 and x=n and k=1 

we transform (**) into the following program: 

pre m,n,k ≥ 0 : 

 let x be nnint tel;  

x:=n; k:=1;  

 asr n,m≥0 and x=n and k=1 rsa ; 

while x≠0 do k:=k*m; x:=x-1 od 

post k=m^n 

The correctness of this program — hence the satisfaction of (1) of our rule — follows from the correctness of 

(**), and the (obvious) correctness of 

pre m,n,k ≥ 0 : 

 let x be nnint tel;  

x:=n; k:=1;  

post m,n≥0 and x=n and k=1 rsa 

and from Rule 8.5.2-6 about the composition of a program with an instruction. This fact leads us to the fol-

lowing declaration (where we omit assertion): 

proc Power(val m,n nnint, ref k nnint)  

 let x be nnint tel;  

x:=n; k:=1;  

 while x≠0 do k:=k*m; x:=x-1 od 

endproc 

It is easy to check that the remaining metaconditions (2), (3), and (5) of our rule are satisfied, which guarantees 

that (*) is a correct metaprogram.  
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8.5.4 Recursive procedures 

Sec. 8.5.3 includes a construction rule which we can use in the process of building a procedure declaration 

adequate for a given procedure call. This process includes two steps: 

1. first, we derive a correct metaprogram that includes a candidate for (a preliminary version of) the body 

of our future procedure, 

2. next we modify this metaprogram in such a way that its components satisfy propositions (1) – (5) of 

Rule 8.5.3-1. 

In the case of recursion, the situation is significantly different since in that case the correctness of a body  

pre prc-body :   

body  

post poc-body 

depends on the correctness of the call  

pre prc-call 

call DoIt (val acp-v ref acp-r)  

post poc-call  

and, of course, vice versa. In other words, now we cannot — as before — construct a correct call from a 

correct body. Instead, in one step, we have to prove that both correctness hypotheses are true.  

Let us analyze such a case on a simple example. Let RecPower be the name of a future recursive procedure 

with the same functionality as Power of Sec. 8.5.3. This means that we expect the following program to be 

correct: 

pre RecPower proc-with ipd and a,b,c ≥ 0:  

call RecPower(val a,b ref c)                     (8.5.4-1) 

post c=a^b 

Now, as a “candidate declaration” of our procedure we take 

proc RecPower(val m,n nnint ref k nnint)  

 let x be nnint tel;  

x:=n; k:=1;   

if x≠0  

then x:=x-1 ; call RecPower(val m,x ref k); k:=k*m 

else skip-i                                 (8.5.4-2) 

 fi 

end-proc 

Observe that in this case, we do not derive our declaration from some previously derived programs, but “invent 

it from scratch”. 

Our mathematical task is now to prove the correctness of the call expressed by (8.5.4-1), provided that the 

declaration of our procedure is described by (8.5.4-2). To do that we shall prove by induction on N the fol-

lowing program-correctness proposition: 

pre RecPower proc-with ipd and a,b,c ≥ 0 and b=N:  

call RecPower(val a,b ref c)                         (8.5.4-3) 

post RecPower proc-with ipd and a,b,c ≥ 0 and b=N and c=a^b 

Here N is a metaexpression that denotes a concrete number. Note that in this way, we construct two infinite 

families of conditions indexed by nonnegative integers. 

In the first step of our proof we set N=0. In this case our hypothesis (8.5.4-3) becomes the following 

correctness statement 

pre RecPower proc-with ipd and a,b,c ≥ 0 and b=0:  



Andrzej Blikle (in cooperation with Piotr Chrząstowski-Wachtel), A Denotational Engineering of Programming Languages     207 

 

call RecPower(val a,0 ref c) 

post RecPower proc-with ipd and a,b,c ≥ 0 and b=0 and c=a^0 

which can be “unfolded” to 

pre RecPower proc-with ipd and a,b,c ≥ 0 and b=0:  

 let x be nnint tel;  

x:=0; c:=1;   

if x≠0  

then x:=x-1 ; call RecPower(val a,x ref c); c:=c*a 

else skip-i  

 fi 

post RecPower proc-with ipd and a,b,c ≥ 0 and b=0 and c=a^b 

which is equivalent to 

pre RecPower proc-with ipd and a,b,c ≥ 0 and b=0:  
 let x be nnint tel;  

x:=0; c:=1 

post RecPower proc-with ipd and a,b,c ≥ 0 and b=0 and c=1 

which is, of course, true.  

Now assume, that our hypothesis is true for some N≥0 and consider the following inductive hypothesis 

which we already write in an “unfolded” form: 

pre RecPower proc-with ipd and a,b,c ≥ 0 and b=N+1:  
let x be nnint tel;  

x:=N+1; c:=1;   

if x≠0  

then x:=x-1 ;  

asr RecPower proc-with ipd and a,b,c ≥ 0 and x=N rsa; 
call RecPower(val a,N ref c); 

asr RecPower proc-with ipd and a,b,c ≥ 0 and b=N and c=a^N rsa; 

c:=c*a; 

else skip-i 

 fi 

post c=a^(N+1) 

The read part of this thesis corresponds to our inductive assumption expressed by means of two assertions that 

describe the properties of states before and after the execution of the recursive call. 

Note that the halting property of our program (8.5.4-3) follows from the fact that the execution of the call 

terminates for a=0, and that if it terminates for a=N, then it terminates also for a=N+1. In our proof, we have 

implicitly applied Rule 7.7.2-3, where proposition (1) has been proved by induction on index i.  

In the end, a personal note is in order. I am aware (I, Andrzej Blikle) of the fact the presented proof is only 

half formal. What is not quite formal are the steps where formal parameters are replaced by actual parameters. 

Although intuitively fairly clear, these steps are not justified by any formal rule, and they do not take into 

account the fact that the local initial state of an execution of a call inherits a declaration-time environment of 

the called procedure (Sec.6.3.4). In our simple example, this informality did not matter much, because no 

other procedures or user-defined types were referred to, but a formal rule should cover such cases. It is clear 

that some research is required in this case, and I would encourage the readers to undertake this challenge.  

8.5.5 Functional procedures 

Analogously to imperative procedures, correctness statements about functional procedures describe the prop-

erties of their calls. Let us start with an example of a functional procedure with the following declaration: 
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fun RecPowerFun(m,n) 

 let k is nnint tel 

 call RecPower(val m,n ref k) 

 return 3*k+1 

endfun 

Here RecPower is the procedure analyzed in Sec. 8.5.4. There are two possible forms of correctness 

statements about a procedure. In our example, they are the following: 

pre RecPowerFun fun-with fpd and a,b ≥ 0: 

 RecPowerFun(a,b) 

post-exp 3*(a^b)+1 

or 

pre RecPowerFun fun-with fpd and a,b ≥ 0: 

 RecPowerFun(a,b) 

post-yoke value > 1 

The first statement expresses the relationship between the input values of actual parameters a, and b, and the 

value exported by the call. The second — expresses a property of the exported value. In the first case, we have 

a precondition and a postexpression, in the second — a precondition and a postyoke.  

To define the semantics of both forms of correctness statements, we shall generalize these statements by 

setting an arbitrary data expression dae in the place of a procedure call. Recall that calls of functional proce-

dures are expressions. This first form of a new correctness statement is 

pre con 

 dae 

post-exp p-dae 

This statement is satisfied if the following metaimplication is true: 

con  dae=p-dae 

Note that dae=p-dae also means that in every state that satisfies con, the evaluation of both expressions 

will terminate cleanly. The second statement is of the form 

pre con 

 dae 

post-yoke yok 

and is satisfied if the following metaimplication is true: 

con  dae □ yok 

Here □ is a new operator that builds a condition from an expression and a yoke. The denotation of dae □ 

yok is defined in the following way: 

[dae □ yok].sta = 

 is-error.sta    ➔ error.sta 
 Sde.[dae].sta = ? ➔ ? 

 let 
  val = Sde.[dae].sta 

 val : Error    ➔ val 
 let 
  (com, yok-v) = val 
  y-val    = Syoe.[yok].com 

 true      ➔ y-val 

Condition dae □ yok is satisfied in a given state if the composite of the value of dae in that state satisfies 

the yoke yok.  
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Concerning the issue of proving correctness statements about functional procedures, if they involve proce-

dures with non-trivial programs in their declarations, we should use rules for proving programs correct. Oth-

erwise, we have to do with “usual” mathematical formulas, where no specific proof vehicles are needed. 

8.5.6 Invariants versus assertions 

From a philosophical viewpoint, invariants and assertions, as they have been defined in this book, are close to 

invariants in the sense of R. Floyd [47] and C.A.R Hoare [55]. Formally they are, however, not only quite 

different from each other but also belong to different linguistic categories108.  

Mathematically invariants are just conditions (Sec. 8.2) but “to be an invariant”, concerns a relationship 

between a condition and an instruction. We say that a condition con is a partial resp. total invariant of an 

instruction ins if it satisfies one of two metacondition: 

{con} ● Sin.[ins] ⊆ {con}                      partial invariant 

{con} ⊆ Sin.[ins] ● {con}                       total invariant 

Total invariants may be also defined by metaimplications: 

con  ins @ con  

whereas partial cannot, since in Lingua-2V we have not introduced a left-hand-side composition of a condi-

tion with an instruction. 

Yet another concept is a loop-invariant for while, which appears in the rule 8.5.2-8:  

there exists a condition inv (an invariant) such that: 

pre inv and dae: sin                 post inv 

pre inv:         while dae do sin od post TT 

prc  inv 

inv  (dae or (not dae)) 

inv and (not dae))  poc  

pre prc : while dae do sin od post poc 

 

In this case inv is a loop-invariant in the instruction  

while dae do sin od ,  

if it satisfies all the metaconditions above the line.  

In all three cases, to be an invariant is a property of a condition relativized in this or another way to an 

instruction.  

The situation with assertions is different. In the first place, they are not conditions, but specinstructions 

built up of conditions. A specinstruction  

asr con rsa 

„behaves” as a filter which does not change a state if the condition con is satisfied, and which changes a state 

by writing an error into its error register in the opposite case. 

Whereas invariants are used in program-correctness proofs, assertions are used when we transform correct 

metaprograms into (optimized) correct metaprograms.  

Assertions describe local properties of programs expressed by the properties of states intermediate in pro-

gram executions. The use of assertion in program-transformations bases on the observation that if a given 

metaprogram is correct, then its assertions must be satisfied in every execution of that program that starts from 

 
108 This section has been written as a reaction to some important remarks of Stefan Sokołowski.  
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a state that satisfies the precondition of the program. This observation allows us to decide which transfor-

mation rules may be applied to a given program109. 

Together with assertions, we have two derivative concepts that allow to decree the satisfaction of a given 

condition on a given range of an instruction: 

asr con; sin rsa  

off sin on.     

These concepts have been defined as colloquialisms, and thus they belong neither to the level of concrete 

syntax and denotations (as assertions) nor to the meta-level (as conditions).  

 
109 In the examples of Sec. 0 assertions were applied only in transformations concerning register-identifiers. Time will 

show if they may have a larger scope of application.  
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8.6 Transformational programming 

8.6.1 First example 

In the previous section, we were dealing with rules for constructing correct metaprograms from correct com-

ponents. An analogy in the automotive industry would be the construction of tools for assembly lines. In the 

present section, we shall consider rules that transform programs to “enrich” their functionality. In the follow-

ing examples, we show the applications of rules introduced earlier as well as some new rules that are going to 

be formalized in Sec. 8.6.2. Let us start with an example of two obviously correct metaprograms.  

pre x,n is nnint : 

   x := 0; 

  while (x+1)2 ≤ n 

    do 

      x := x+1 

    od 

post x = isrt(n) 

pre x,n,m is nnint 

  x := 0; 

  while (x+1)*m ≤ n 

do 

  x := x+1 

od 

post x = iqt(n,m) 

Each of these programs goes number-by-number through the set of nonnegative integers in seeking the ex-

pected result. Returning to our automotive metaphor, we may say that both programs are driven by the same 

while-engine: 

P1: pre x,k is nnint: 

x := 0; 

while x+1 ≤ k 

do 

x := x+1 

od 

post x = k  

Now, we can use this universal engine to drive two different appliances: an integer square root isrt(n) or 

an integer quotient iqt(n,m). In each of these cases, we change the functionality of a program but preserve 

its correctness. Let us show a simple universal method that can justify the correctness of the resulting met-

aprogram.  

First observe that the correctness of P1 implies the correctness of P2.  

P2: pre x,n is nnint : 
x := 0; 

asr x,n is nnint: 

while x+1 ≤ isrt(n) 

do  

x := x+1 

od 

rsa 

post x = isrt(n) 

Here and in the sequel, new or changed elements of a program will be marked in red. It is to be clarified that 

introducing an on-region (Sec. 8.3) of assertion  

x,n is nnint  

is not the result of an application of a general rule, but a step the soundness of which has to be proved, although 

in this case the proof is, of course, straightforward. 
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So far, our metaprogram looks a bit pointless since it refers to isrt(n) to compute it. We shall, therefore, 

eliminate that expression from the programming layer on the strength of a strong equivalence110: 

x+1 ≤ isrt(n) ≡ (x+1)2 ≤ n whenever x,n is nnint 

and applying Lemma 8.4.3-3, which allows replacing a boolean expression by a strongly equivalent one. In 

our case, this equivalence holds only in the context specified by the whenever clause, and this context is 

assured within the on-range of our assertion. 

As a result of the described transformation, we end up with a final program P3 where the assertion (now 

not necessary) has been removed. 

P3: pre x,n is nnint : 

x := 0; 

while (x+1)2 ≤ n 

do 

x := x+1 

od 

post x = isrt(n) 

The instruction of the derived program does not refer to isrt(n), and therefore may be said to be “more 

practical” than P2. 

Nevertheless, it very slow. If we want to speed it up, we have to install a “faster engine” to drive it. Let us 

start from the construction of a universal searching engine that searches for its targets in logarithmic time.  

Let po2.k denote a condition which is satisfied if k is a nonnegative power of 2, i.e., if there exists a 

nonnegative m such that: 

k=2m 

Let mag.k (the magnitude of k) denotes a function with values in the set of powers of 2 such that 

mag.k ≤ k < 2*mag.k 

For instance, mag.11 = 3 since 

23 ≤ 11 < 24 

Now, it is easy to prove the total correctness of the two following programs: 

 

Q1: pre x,k,z is nnint : 
z := 1 

asr x,k,z is nnint and po2.z : 

while z ≤ k do z:=z*2 od 

rsa 

post x,k,z is nnint and z = 2*mag.k 

  

 Q2: pre x,k,z is nnint and z = 2*mag.k: 
   x := 0 

   while z > 1  

    do  

     z := z/2; 

     if x+z ≤ k then x:=x+z else skip-i fi 

    od 

 
110 This equivalence may be formally proved on the ground of the following definition of isrt(n): it is the unique integer k 

such that k2 ≤ n < (k+1)2. 
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  post x = k and z = 1 

 

The first program computes the successive powers of 2 until it reaches 2*mag.k, and the second returns from 

2*mag.k to 1 through successive powers 2m and on its way summarises these powers of 2 that correspond to 

1 in the binary representations of k. For instance, since 

11 = 0*16 + 1*8 + 0*4 + 1*2 + 1*1 

the second program, while given 2*mag.11 = 16, will perform the following summation 

8 + 2 + 1 = 11. 

In this way, the target value of k is reconstructed in logarithmic time, compared to a linear time of program 

P3. Now observe that the following proposition is true: 

z ≤ mag.k  ≡  z ≤ k whenever x,n,z is nnint and po2.z 

Due to that equivalence, we can replace the boolean expression in while of the first program by strongly 

equivalent z ≤ k. If we join both programs on the ground of Rule 8.5.2-3, we get our target program that 

finds the value of k in logarithmic time. In the same step, we move the initialization of x at the beginning of 

the program. 

Q3: pre z, x, k is nnint : 
z := 1 

x := 0 

asr x,k,z is nnint and po2.z : 

while z ≤ k do z:=2*z od; 

 while z > 1  

  do  

   z := z/2; 

   if x+z ≤ k then x:=x+z fi 

  od 

rsa 

post x = k and z = 1 

Here and in the sequel   

if dae then ins fi  

means  

if dae then ins else skip-i fi 

If in this program we replace the expression k by the expression isrt(n), then we have a program that 

computes isrt(n) but refers to it. We eliminate this expression by using two strong conditional equiva-

lences: 

z ≤ isrt(n)  ≡ z2 ≤ n     whenever z, n is nnint 

x+z ≤ isrt(n) ≡ (x+z)2 ≤ n  whenever z, x, n is nnint 

In this way we get 

Q4: pre z, x, n is nnint: 
z := 1; 

x := 0 

asr x,k,z is nnint and po2.z : 

while z2 ≤ n do z:=2*z od ; 

while z > 1  

  do  

   z := z/2; 

   if (x+z)2 ≤ n then x:=x+z fi 
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  od 

rsa  

post x = isrt(n) and z = 1 

This program computes isrt(n), but can be optimized further by restricting the number of performed op-

erations (time). 

Let us start from the observation that in each run of the first loop, the program recalculates the value of z2, 

which is not optimal. Of course, in our simple case, it is not very relevant, but if we would repeat the multi-

plication of large matrices, the optimization may be worth the effort. 

To optimize Q4 we introduce a new variable q, and we enrich our program in such a way that the condition 

q=z2 is always satisfied. In this case, q is called a register identifier and z2 — a register expression. This 

technique is discussed in detail in Sec. 8.6.3.  

Q5: pre z, x, n, q is nnint:  
z := 1; 

x := 0; 

q := 1; 

asr z, x, n is nnint and po2.z and q = z2 

while q ≤ n  

do  

off z:=2*z; q:=4*q on 

od 

while z > 1  

do  

off z:=z/2; q:=q/4 on 

if x2+2*x*z+q ≤ n then x:=x+z fi 

od 

rsa 

post x=isrt(n) and z = 1 and q=z2  

Notice the double-use of off-on is necessary since each time when the first assignment destroys the satis-

faction of q=z2, the second recovers it. Now we proceed to further transformations: 

1. we use the equivalence  z>1 ≡ q>1 whenever (z>0 and q=z2) to modify boolean expression 

in the second loop, 

2. we introduce two new variables y and p with the conditions y=n-x2 and p = x*z, 

3. we use the equivalence 

x2 + 2*x*z + q ≤ n ≡ 2*p+q ≤ y whenever (y=n-x2 and p=x*z) 

Using the corresponding transformations, we get the following program 

 
Q6: dec let be number 
  pre z, x, n, q, y, p is nnint: 

   z := 1; 

   x := 0; 

   q := 1; 

   asr z, x, n is nnint and q = z2 : 

    while q ≤ n  

     do  

      off z:=2*z; q:=4*q on 

      od 

    y := n; 

    p := 0; 

    asr y=n-x2 and p = x*z : 
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while q > 1  

do  

off z:=z/2; q:=q/4; p:=p/2; on 

if 2*p+q ≤ y then x:=x+z; p:=p+q; y:=y-2p-q fi 

od 

rsa 

rsa  

post x=isrt(n) and z=1 and q=z2 and y=n-x2 and p=x*z  

Contrary to the former introduction of a new variable which was clearly justified, now it not quite clear why 

p and y have been introduced. The answer to this question follows from a well-known truth that in program-

ming, like in playing chase, we sometimes have to predict a few moves in advance. These moves will be 

shown a little later.  

In the next transformation, we prepare our program for the removal of variable z. For that sake, we perform 

the following changes: 

1. we apply the equivalence  q=z2  isrt(q)=z whenever z>0 to change the assertion, 

2. we use the condition isrt(q)=z to replace z by isrt(q) everywhere except the left-hand side of 

the assignment, 

3. we make obvious changes based on the equality z=1. 

The resulting program is the following: 

Q7: pre z, x, n, q, y, p is nnint: 
   z := 1; 

   x := 0; 

q := 1; 

   asr z, x, n is nnint and isrt(q)=z : 

    while q ≤ n   

     do  

      off z:=2*isrt(q); q:=4*q on 

      od 

    y := n; 

    p := 0; 

    asr y = n-x2 and p = x*isrt(q): 

     while q > 1  

      do  

       off z:=isrt(q)/2; q:=q/4; p:=p/2 on 

       if 2*p+q ≤ y then x:=x+isrt(q); p:=p+q; y:=y-2p-q fi 

      od 

    rsa   

   rsa  

  post x=isrt(n) and z=1 and q=1 and p=x and y=n-x2  

Now notice that in Q7 the variable z does not appear neither in boolean expressions nor on the right-hand 

sides of assignment that do not change z. Since we do not care about the terminal value of z, we can remove 

that variable from our program together with the corresponding assignment (general rule will be described in 

Sec. 8.6.2). In this way we get: 

Q8: pre x, n, q, y, p is nnint : 
   q := 1; 

   x := 0; 

   asr x, n is nnint : 

    while q ≤ n  

     do  
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      q:=4*q 

      od 

    y := n; 

    p := 0; 

    asr y = n-x2 and p = x*isrt(q): 

     while q > 1  

      do  

       off q:=q/4; p:=p/2 on 

       if 2*p+q≤y then x:=x+isrt(q); p:=p+q; y:=y-2p-q fi 

      od 

    rsa   

   rsa  

  post x=isrt(n) and q=1 and p=x and y=n-x2  

Now we use the equivalence 

x=isrt(n) ≡  p=isrt(n) whenever p=x 

to modify the postcondition which makes variable x not necessary anymore. Therefore, we can remove it with 

all expressions, and assertions, where it appears.  

Q9: pre n, q, y, p is nnint: 
   q := 1; 

   while q ≤ n do q:=4*q od 

    y := n; 

    p := 0; 

    while q > 1  

     do  

      if 2*p+q≤y then p:=p+q; y:=y-2p-q  fi 

     od 

  post p=isrt(n) and q=1 

In the last step we replace the instruction   

p:=p/2; if 2*p+q≤y then p:=p+q; y:=y-2p-q else x:=x fi 

by an equivalent instruction 

if p+q≤y then p:=p/2+q; y:=y-p-q else p:=p/2 fi 

As a result, we get the final version of our program: 

Q10: pre n, q, y, p is nnint : 
    q := 1; 

    while q ≤ n do q:=4*q od 

    y := n; 

    p := 0; 

while q > 1  

do  

q:=q/4;  

if p+q≤y  

then p:=p/2+q; y:=y-p-q else p:=p/2  

fi 

od  

post p = isrt(n) 

This program had been written by a well-known Norwegian computer-scientist Ole-Johan Dahl in 1970. Its 

value cam be seen in the fact that the arithmetic operations used in the program are easily implementable in a 

binary arithmetic.  
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I do not know in what way Dahl has built this program but we may suppose that he performed an optimi-

sation similar to ours, although without formalised rules. 

At the end of this section, one pragmatic remark. Programmers who develop hundreds of thousands or 

millions of lines of code will probably regard the discussed example with a certain scepticism. Indeed, the 

volume of our program is not very impressive, and the shown optimization is not very irrelevant for the ma-

jority of applications. If, however, we build microprograms that are implemented in hardware and executed 

hundreds of millions of times by hundreds of millions of devices, then its correctness as well as time- and 

space-consumption may be worth an effort. Our example also shows a specific general method  ― although 

not universal ― of building programs in three steps: 

1. writing a program-engine that searches through a specific set of data, 

2. installing an application on that engine which implements the expected functionality, 

3. optimizing the program. 

As we are going to see in Sec. 8.6.2, program optimization may also be used in changing the types of data 

elaborated by a program.  

8.6.2 Changing data-types 

Another application of register-identifier technique may serve in the replacement of one data-type by another 

one. In this section we show how to transform program Q10 from Sec. 8.6.1 into a program that operates on 

binary representations of numbers. Let Binary be the set of binary representations of integers, i.e. a set of 

zero-one tuples starting from 1.  

bin : Binary = {(1)} © {(0), (1)}c*  

On this set we define a few functions and relations: 

sl : Binary ⟼ Binary                               shift left 
sl.bin =  
 bin = (0) ➔ 0 
 true   ➔ bin © (0) 

sr : Binary ⟼ Binary                             shift right 

sr.bin =  
 bin = (0) ➔ 0 
 true   ➔ pop.bin 

+ : Binary ⟼ Binary                               addition 

− : Binary ⟼ Binary                               subtraction 

< : Binary ⟼ {tt, ff}                               earlier 

≤ : Binary ⟼ {tt, ff}                             earlier or equal 

 

The addition and the subtraction of tuples are denoted by the same symbols as for numbers and we assume 

that they are defined in such a way that the equations (5) and (6) below are satisfied. The orderings are lexi-

cographic and again correspond to their numeric counterparts. 

b2n : Binary  ⟼ Number                  binary to number; conversion function 

n2b : Number ⟼ Binary                   number to binary; conversion function 

All these functions and relations are defined in such a way that they satisfy the following equations: 

(1) b2n.(n2b.lic)     = num       where num : Number 
(2) n2b.(b2n.bin)     = bin 
(3) n2b.(num*2)     = sl.(n2b.num) 
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(4) n2b.(num/2)     = sr.(n2b.num)    where „/” denotes the integer part of division 
(5) n2b.(num1 + num2)   = n2b.int1 + n2b.num2 
(6) n2b.(num1 − num2)   = n2b.num1 − n2b.num2 
(7) n2b.num1 < n2b.num2  iff    num1 < num2 
(8) n2b.num1 ≤ n2b.num2  iff    num1 ≤ num2 

Now we transform program Q10 by introducing to it three new variables and three corresponding register-

conditions: 

Q = n2b(q) 

Y = n2b(y) 

P = n2b(p) 

At the same time we introduce a new type binary into our language. We introduce the assertions into it and 

we shift all initialisations to the beginning of our next program: 

Q11: pre n, q, y, p is nnint and Q, Y, P is binary and n ≥ 1 
 q := 1; Q := (1); 

 y := n; Y := n2b(n); 

 p := 0; P := (0); 

 asr Q = n2b(q) and Y = n2b(y) and P = n2b(p) : 

  while q ≤ n  

do  

off q:=4*q ; Q = sl(sl(Q)) on  

od 

  while q > 1    

do  

off q:=q/4; p:=p/2;  

Q:=sr(sr(Q)); P:=sr(P); on 

if p+q≤y  

then off  p:=p/2+q; y:=y-2p-q;  

P:=sr(P)+Q; Y:=Y-sl(P)-Q on 

else off p:=p/2; P:=sr(P) on 

fi 

od 

asr  

post p = isrt(n) and q = 1  

Now we use four conditional equivalences in order to replace boolean numeric expressions by boolean binary 

ones: 

q ≤ n   ≡ Q ≤ n2b(n)   whenever Q=n2b(q) 

q > 1   ≡ (1) < Q     whenever Q=n2b(q) 

p+q ≤ y  ≡ P+Q ≤ Y      whenever Q=n2b(q)and Y=n2b(y)and P=n2b(p) 

p=isrt(n) ≡ P=n2b(isrt(n)) whenever P=isrt(p) 

Next we remove from our program all numeric variables except n with the corresponding assignments and 

the on-clause. Since the on-range reaches the end of the program, we can modify the postcondition in an 

appropriate way. 

Q12: pre n ≥ 1 and Q, Y, P is binary 
 Q := (1); 

 Y := n2b(n); 

P := (0); 

while Q ≤ N do Q = sl(sl(Q)) od; 

while (1) < Q  

do  

Q:=sr(sr(Q)); P:=sr(P) 
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if P+Q≤Y  

then P:=sr(P)+Q; Y:=Y-sl(P)-Q 

else P:=sr(P) 

fi 

od 

post P = n2b(isrt(n)) and Q = (1) 

8.6.3 Adding a register identifier 

This section is devoted to a transformation of a metaprogram by adding to it a new identifier ide-r which 

satisfies an assertion of the form: 

ide-r = dae-r.                                  (*) 

Such transformation was applied in Sec. 8.6.1 in passing from Q4 to Q5 and in Sec. 8.6.2 in passing from 

Q10 to Q11. 

An identifier ide-r that satisfies the condition ide-r=dae-r on a certain range is called a register-

identifier or just a register; the expression dae-r is called a register-expression and the condition ide-

r=dae-r ― register-condition. 

Let us start from an obvious generalization of the meaning of @ (Sec. 8.2.4) which now will compose 

instructions not only with conditions but also with data expressions: 

Sde.[ sin @ dae ] = Ssi.[sin] ● Sde.[dae] 

Now, let us consider a metaprogram that we assume to be correct: 

P:pre prc 

  ins-h;                           head (possibly empty) 

  asr con rsa ;   

  asr con : ins ; rsa 

ins-t                              tail (possibly empty) 

post poc 

Let ide-r be an identifier which does not appear in P, and let dae-r be a data expression such that  

pre con: ide-r := dae-r post TT 

which simply means that con guarantees the execution of ide-r := dae-r without an error or looping. 

Under these assumptions a transformation that enriches P by introducing ide-r with a register-condition 

ide-r=dae-r yields a program: 

Q: pre prc and ide-r is tex 
ins-h ;  

 ide-r := dae-r ; 

 asr con and ide-r=dae-r : 

$(ins, ide-r=dae-r)                   enriched instruction (see below) 

rsa ; 

ins-t 

post poc  

where $(ins, ide-r=dae-r) denotes such an enrichment of ins which makes Q correct, provided that 

P was correct. The assertion asr con rsa has been dropped from Q (although we could have left it there), 

since it only served to guarantee, that in its location the value of dae-r was defined.  

The syntactic operation $ is defined by structural induction, wrt the structure of ins. Let us start from ins 

which is an assignment 

ide := dae 
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where obviously ide is different from ide-r, since we have assumed that ide-r does not appear in P.  

If ide does not appear in dae-r, then the execution of this assignment does not cause any change in the 

value of dae-r, and therefore we do not need to add any actualization.  

If, however, this is not the case, then directly after ide:=dae, we have to add an assignment which 

recovers the satisfaction of the condition ide-r=dae-r. In such a case 

$(ide:=dae, ide-r=dae-r)  =  off ide:=dae; ide-r:=dae-r on 

where equality sign ‘=’ denotes the equality of syntactic objects. An off-clause is necessary here since ide 

appears in dae-r. Consequently, the alteration of the value of ide may cause the alteration of the value of 

dae-r and the falsification of our condition. In the case of the transformation of Q4 to Q5 with a register 

condition q=z2 this has led to the enrichment of 

asr q=z2 rsa ; z:=2*z 

into: 

asr q=z2 rsa ; off z:=2*z ; q:=z2 on 

The assertion has been left in the resulting instruction since we shall need it a little later. Now, our instruction 

may be changed into an equivalent one (note the inverse order of assignments): 

asr q=z2 rsa ; off q:=((z:=2*z) @ z2) ; z:=2*z on 

In this instruction, we can eliminate @, by transforming the expression (z:=2*z)@ z2 to a standard form: 

asr q=z2 rsa ; off q:=4*z2 ; z:=2*z on 

Now, since the assertion q=z2 holds “just before” the assignment q:=z2, we can replace our instruction by: 

asr q=z2 rsa ; off q:=4*q ; z:=2*z on 

which makes the modification of q independent of z, and therefore — in our example — allows for the elim-

ination of z from the program. In the general case, these transformations are as follows. First the instruction 

off ide:=dae ; ide-r:=dae-r on 

is replaced by an equivalent one 

off ide-r:=((ide:=dae) @ dae-r) ; ide:=dae  on 

Further on, the expression ((ide:=dae) @ dae-r) is transformed to a standard form, and then we try to 

change it is such a way that the identifier ide can be eliminated due to the register-condition ide-r=dae-

r. This action completes the transformation. 

The second “atomic” case to be investigated is a procedure call: 

call ide(val acp-v ref acp-r) 

Let us assume that our procedure call appears in the program in the same context as the assignment in the 

former case. We again have two subcases to be considered. 

If none of the actual referential parameters appears in dae-r, then we keep the instruction unchanged. In 

the opposite case, we replace it with the instruction 

off call ide (ref acp-r   val acp-v); ide-r:=dae-r on. 

This completes the first step of structured instruction. The remaining steps are rather obvious: 

 

$((ide-1 ; ide-2), ide-r=dae-r) =  

$(ide-1, ide-r=dae-r) ; $(ide-2, ide-r=dae-r) 
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$(if dae-b then ins-1 else ins-2 fi, ide-r=dae-r)  = 

if dae-b then $(ins-1, ide-r=dae-r) else $(ins-1, ide-r=dae-r) fi 

 

$(while dae-b do ins od, ide-r=dae-r) =  

while dae-b do $(ins, ide-r=dae-r) od 

 

In short, after each assignment or a procedure call that changes the value of a register condition, we add a 

recovering assignment. The generalization of $ on specinstruction is rather evident. 

In the end, let us point out a methodological difference between @ and $. The former is a character in the 

syntax of Lingua-2V, and on the denotational side corresponds to a sequential composition of an instruction 

denotation with a data-expression denotation. Therefore: 

Sde.[ins @ dae] = Sin.[ins] ● Sde.[dae] 

In turn, $ is a constructor of syntaxes (from the level of MetaSoft) 

$ : Instruction x RegisterCondition ⟼ Instruction 

where 

RegisterCondition = Identifier = DatExp111 

  

 
111 Notice that the first sign of equality belongs to MetaSoft and denotes the equality of formal languages, whereas the 

second – typed in Courier New – is a character in the syntax of Lingua.  
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9 RELATIONAL DATABASES INTUITIVELY 

9.1 Preliminary remarks 

Section 10 is devoted to an extension of Lingua-2 by selected database tools of SQL (Structured Query Lan-

guage). Since I don’t expect the reader to be familiar with SQL, the present section contains an informal 

description of these SQL-mechanisms that will be given denotational definitions in Sec. 10. Some notions that 

I introduce below do not appear in standard SQL manuals, and therefore they will be labeled by “MON” which 

stands for “my own notion”. 

This section refers to several sources since one manual is usually not enough to determine the meaning of 

an SQL mechanism . The book of Lech Banachowski [9] contains a model of Relational Databases and a nice 

description of SQL standard, but some issues are missing (e.g., three-valued predicates), and some others are 

only sketched. On the other end of the scale of clarity is a thick volume of Paul DuBois [46]. I quote some 

descriptions from that book just to show the scale of problems that one has to tackle in building a denotational 

model for SQL. Between these two extremes, but certainly closer to DuBois, are four other books [48], [54], 

[66], and [72].  

Since all mentioned books were published some time ago, some mechanisms described there my look today 

differently. However, it doesn't seem too much of a problem, since in any case, all our SQL-constructions 

must be defined independently. Of course, we should make them as close as possible to SQL standard, and, 

of course, applicable to SQL databases created by existing applications. 

Lingua-SQL, whose draft description is given in Sec. 10, may be regarded as a sort of API (Application 

Programming Interfaces) or a CLI (Call Level Interfaces)112. API’s have been created for such programming 

languages as C, PHP, Perl, Phyton, and CLI’s — for ANSI, C, C#, VB.NET, Java, Pascal, and Fortran113. In 

each of these cases, a language is equipped with mechanisms allowing to run functionalities of an inde-

pendently constructed SQL engine. In the case of Lingua-SQL, the situation is different. Our language, if 

ever implemented, must base on our own SQL engine “equipped” with a denotational model. Such an approach 

is necessary if we want to provide a credible denotational model for Lingua-SQL. 

9.2 Simple data 

Only one data-type ― the type of tables (Sec. 9.3) ― appears explicitly in SQL-manuals mentioned above. 

Several other types appear only implicitly. They include simple data (MON) that appear in the fields of data-

base tables and structured types (MON) such as rows and columns of databases and the databases themselves.  

Simple data constitute probably one of the least standardised areas of SQL. The sorts and the types of data 

differ not only between different applications but also between different implementations of the same appli-

cation.  

In the present section, I base mainly114 on [72], whose authors declare the compatibility with the standard 

ANSI SQL-2011115. The SQL syntax is printed in Arial Narrow.  

 
112 CLI refers to the standard ANSI SQL (see [72] p. 359) 
113 Access has not been mentioned on these lists since it is available only together with Microsoft Basic Access.  
114 „Mainly” but not „totally” since this manual also contains gaps.  
115 ANSI is an acronym of American National Standard Institute, and SQL-2011 is a standard accepted by ANSI in 

December 2011.  
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Database-tables can carry four sorts of data which, except booleans, split into several types: 

• Numbers split into three subsorts: total numbers, decimal numbers, and floating-point numbers. Each 

of them splits again into several types differing with each other on the range of values (in our approach 

can be described by yokes), e.g., INTEGER, SMALLINT, BIGINT or DECIMAL(p, s), where p (precision) 

denotes the maximal number of digits and s (scale) ― the maximal number of digits after the decimal 

point.  

• Logical values are handled as in the three-valued predicate calculus of Kleene (Sec. 2.9), and in [72] 

they are denoted by TRUE, FALSE, and NULL whereas in [46] by 0, 1, and NULL Sometimes, e.g., in [54], 

instead of NULL we have UNKNOWN. 

• Strings are in principle words in our sense, but, similarly to numbers, they are split into types accord-

ing to a maximal accepted number of characters. For instance, CHARACTER(n) is the type of words of 

the length n. The type of a string with varying length limited to n is called in [72] CHARACTER VARY-
ING(n), and the type of a string of an unlimited length (whatever it means) is called BLOB. There exist 

also binary strings, and text-strings called TEXT.  

• Times are tuples of three types: DATE ― (year, month, day), TIME ― (hour, minute, second), DAY-

TIME ― (year, month, day, hour, minute, second). 

Although this is nowhere explicitly said, one may guess (cf. [72]) that all sorts of data contain NULL that plays 

the role of an abstract error. The majority of constructors, except boolean constructors, seem to be transparent 

for that error.  

The constructors of simple data may be split into five following groups116: 

1. Arithmetic operations: +, ‒, *, /. 

2. String operations: CONCAT, UPPER, LOWER, SUBSTR, LENGTH. 

3. Time operations: GETDATE, DAYNAME, DAYOFMONTH, 

4. Basic predicates: =, <>, <, <=, >, >=, IS NULL, BETWEEN, LIKE. 

5. Logical connectives: NOT, OR, AND. 

The first group apparently seems quite obvious. It turns out, however, that this is the case only in typical 

situations: 2+3=5, but if we try to add a number to a string (which is possible!), or to add two numbers whose 

sum exceeds the maximal allowed value, then the expected result is not clear. The source [72] does not 

comment on such cases at all, and in [46] p. 786, we can read the following117: 

If we do not provide (…) correct values to functions, we should not expect reasonable results. 

In another place of the same manual (p. 754) we read: 

(…) expressions that contain big numbers may exceed the maximal range of 64-bits computations in which 

case they return unpredictable values (my emphasis).  

It is to be pointed out that in the definitions of arithmetic operations, NULL does not appear, although it 

could be used as an abstract error. In this place, the worst possible solution has been chosen: instead of an 

error message, we have an “unpredictable result” which means that the computation does not abort, but 

generates a false result without warning the user.  

Especially many unclarities are associated with default rules for type-conversion. For instance ([46] p. 753) 

the following rule concerns the addition operation in the context of words as arguments: 

 
116 The descriptions of 1 to 4 are from [72] (pp. 129 and 180) and of 5 and 6 from [54] (pp. 191 and 201). The terminology 

is mine. 
117 My own translation from a Polish version of the book. 
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… ‘+’ is not an operator for the concatenation of texts, as it is the case in some programming languages. 

Instead, before the performance of the operation, textual strings are converted into numbers. Strings that do 

not look like numbers (my emphasis) are converted to 0. 

This rule has been illustrated with the following examples: 

‘43bc’ + ‘21d’ = 64 

‘abc’ + ‘def’ = 0 

It has not been explained, if, e.g., ‘43ab2c’ “looks like a number”, and if it does, is it converted to 43 or 432? 

It has not been explained either, whether these rules apply to other arithmetic operations.  

Fortunately [72] treats conversion a little more seriously ― although still informally ― introducing four 

types of conversions: 

1. strings to numbers, 

2. numbers to strings, 

3. strings to dates and times, 

4. dates, and times to strings. 

String-operators offer fewer ambiguities but still are defined only for typical situations. For instance, I did not 

find information about what happens if the concatenation of two strings exceeds an accepted length.  

Time-operators offer further examples of inconsistencies between different SQL-applications that concern 

both the syntax and the types of operators. We not further analyse this problem since the involved operators 

are easy to formalise.  

Predicates are typologically ambiguous since, in the majority of cases, they apply to all four sorts of data. 

E.g., the operators ‘=’ and BETWEEN may be used for numbers and strings and probably also for dates. Their 

definitions are rather vague. E.g., in [72] p. 130, we can read: 

If in a query, we use the (=) operator, the compared values must be identical, and in the opposite case, the 

condition is not satisfied. 

It has not been explained in “not satisfied” means “false” or “not true”. E.g. should we regard the value of 

the boolean expression 12 = abc as false or undefined? 

The operator BETWEEN takes three arguments and checks if the first is between the second and the third in 

some default ordering. 

The operator LIKE takes two string-arguments and checks if the first coincides with the pattern described 

by the second. Patterns are described using letters and digits and two special symbols: 

% ― an arbitrary string of characters (possibly empty) 

_  ― an arbitrary character 

The only source where I found complete definitions of logical operators in [54], where a table-definition is 

given on page 191.  In our notation, this table would be as in Fig. 9.2-1. 

 

 

OR tt ff ee 

tt tt tt tt 

ff tt ff ee 

ee tt ee ee 

    
 

 

AND tt ff ee 

tt tt ff ee 

ff ff ff ff 

ee ee ff ee 
 

 

NOT  

tt ff 

ff tt 

ee ee 
 

Fig. 9.2-1 Boolean operators in SQL 
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Despite the existence of the NOT operator, special negated versions are introduced for all predicates, e.g., NOT 
NULL and NOT BETWEEN. 

In the case of all non-boolean operators, we have a situation typical for software-manuals. Within the area 

of standard ranges of arguments, everything is clear. If, however, we go beyond that, we can hardly predict 

what happens. With a high degree of certainty, we may expect that in each implementation, we shall encounter 

a different surprise.  

One more remark at the end. Simple data may be assigned in SQL to table fields only but not to variables.  

9.3 Creating tables 

An important SQL-concept is a table. On the ground of our denotational model, tables are close to118 one-

dimensional arrays of records that carry simple data. In SQL manuals, records included in tables are called 

rows, the attributes of these records ― column-names, and the intersections of rows and columns ― table 

fields.  

Tables in SQL ― and precisely speaking the corresponding values (Sec. 4.3.6) ―   are (probably?) the 

only sort of SQL data that may be assigned to variables. In the sequel, variables carrying tables are called 

table-variables (MON). To declare a table variable, we use operator CREATE TABLE, which to a variable iden-

tifier assigns a table type and (we can guess) some sort of an empty table (MON). In our terms, empty tables 

will correspond to pseudo-data (Sec. 4.4.1)119.  

The table type is a record-body supplemented by some properties of attributes that may be split into two 

groups: yoks as defined in Sec. 4.3.4 and default values, which go a little beyond our model, but it may be 

easily introduced into it. Here is an example of two such declarations which are cited with only small modifi-

cations after [4] p. 14120: 

 

CREATE TABLE Departments 
 ( 
 Department_ID   Number(3)  PRIMARY KEY, 
 Department_name   Varchar(20)  NOT NULL    UNIQUE 
 City      Varchar(50) 
 ); 

 

CREATE TABLE Employees 
( 
 Employee_ID   Number(6)  PRIMARY KEY, 
 Name      Varchar(20)  NOT NULL, 
 Position      Varchar(9)  DEFAULT NULL,  
 Manager      Number(6) , 
 Employment_date  Date, 
 Salary      Number(8,2),  
 Bonus      Number(8,2), 
 Department_ID    Number(3)  REFERENCES Departments, 
CHECK (Bonus < Salary) 

 
118 In Sec. 10 they are defined in a slightly different way.  
119 I did not find that concept in the literature on SQL, neither any information about what sort of an object is assigned 

to a table variable by its declaration.  
120 In Sec. 10 we shall frequently refer to this example and also to some other examples from [4]. In all cases we keep 

the original notation, where Number(p) denotes a type of total numbers with p digits, and Number(p, s) denotes the 
type of decimal numbers of the total number of digits equal to p and the number of digits after decimal point equal to 
s. In turn Varchar(n) denotes the type of strings of length not exceeding n.  
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 ) 

The tabulation in this example shows a certain universal structure of a declaration: 

• in the first column we see column names, i.e., the attributes that are common to all the records (rows) 

constituting a table, 

• the remaining columns carry information about data stored in columns; in our model, they will be 

expressed by bodies and yoks, 

• a special case is a piece of information expressed by REFERENCES Departments, which describes a 

subordination relation between tables (Sec. 10.3), 

• what we see in the last row of the second declaration is a condition concerning an expected relation 

between the values of the fields Salary and Bonus in each row of the future table; the bonus cannot be 

higher than the salary; in our terminology, this is a yok expression using a general quantification. 

The elements of a table declaration, except column names, define so-called integrity constraints. Their mean-

ings are as described below. According to a convention assumed earlier in this book, whenever we say that an 

error message is raised, we mean that at the same time that our program aborts.  

1. Number(3) ― The type of data in the column. 

2. DEFAULT ― The default value. 

3. NOT NULL ― All fields in the column must not be empty, i.e., none of them may be NULL. An attempt 

of a violation of this constraint should generate an error signal. 

4. UNIQUE ― No two identical data may appear in the column. If that happens, an error message should 

be raised.  

5. PRIMARY KEY ― This column is indicated as a primary key. Each primary key must be an unambiguous 

key, which means that the value of that key in a row identifies that row unambiguously. The attribute 

primary key may be assigned to more than one column. The database engine should react with an error 

message for each violation of the unambiguity of a primary key. 

6. REFERENCES Departments ― The field Department_ID in table Employees is related to the field of the 

same name in the table Departments. Relations between tables are used to modify tables and to set 

queries (see later). 

7. CHECK(Bonus<Salary) ― Whenever we add a new row to a table, or we modify an existing row in a 

way that violates this condition, an error message is generated.  

As we see from this example, when we declare a table variable, we simultaneously define its type, i.e., its 

body and yok121. This type defines five groups of properties of the future table: 

1. the names of columns, 

2. the types of values in all fields of a given column, e.g., Number(6), 

3. restrictions concerning columns as a whole, e.g., PRIMARY KEY, NOT NULL or UNIQUE, 

4. relationships between values in each row, e.g., CHECK(Bonus<Salary), 

5. relationships between tables by indicating related columns in tables, e.g., REFERENCES Departments. 

As was already said, the properties of columns describe by 2. to 5. are called integrity constraints. They are, 

however, not the only examples of such constraints. Another example of an integrity constraint may be the 

requirement that some operations on balance sheets must not change the balance-sheet total (an example in 

Sec. 9.5).  

 
121 It seems that SQL lacks a mechanism that would allow to define a table type independently of a variable declaration.  
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9.4 The subordination relation for tables  

Subordination relations in SQL define links between tables that are used when we perform operations on 

several tables that are linked together. In our terms, relations may be regarded as yoks that define properties 

of databases, where databases are sort of records that carry tables. 

The mechanism of establishing relations between tables appears in SQL literature in several versions. All 

of them are based on a common idea, although their implementations may be different. Below I try to describe 

this common idea.  

Consider the tables Departments and Employees from Sec. 9.3. In Employees, we have a column Department_Id 
which defines the association of an employee to a department. In its declaration we have the constraint REF-
ERENCES Departments expressing the fact that in the table Departments we may find information about the 

department where the employee is employed. Instead of storing in the table Employees the information about 

the department where he/she works, we only show the ID of that department that identifies the appropriate 

row in the table Departments. Now, for this construction to have a practical sense, our two tables must satisfy 

three conditions: 

1. the column Department_ID must appear in both tables, 

2. every ID of a department which is in the table Employees must also appear in the table Departments, 

3. in the table Departments the attribute Department_ID must be an unambiguous key.  

If these conditions are satisfied, then we say that: 

the attribute Department_ID links the tables Departments and Employees 

 with a one-to-many relation (abbr. 1-M) 

With every department, there is associated a set (possibly empty) of employees, whereas, with every em-

ployee, there is associated exactly one department. 

In the pair of tables, Departments, and Employees, the table Departments is a parent table or a superior table, 

whereas Employees is a child table or a subordinated table. The attribute Department_ID is a primary key in the 

table Departments and a foreign key in the table Employees.  

If an employee’s row ER and a department’s row DR have the same value in the field Department_ID, then 

we say that the ER points to the DR (MON). 

By (1-M), we shall denote a ternary relation being a set of triples defining a relationship between two tables 

with a common attribute: 

(1-M) ⊆ Table x Attribute x Table 

We assume that  

(tab-1, atr, tab-2) : (1-M)  iff   tab-1 is a parent of tab-2 with a primary key atr. 

In our example, the triple (Departments, Department_ID, Employees) is, therefore, an element of such a relation. 

In that case, the attribute Department_ID is called a linking key of our tables. 

Observe now that this relation may be broken by the modification of one or both tables, e.g., whenever: 

• we remove a row from Departments that is pointed by a row from Employees, 

• we insert a row to Employees with department’s ID that does not exist in Departments, 

• in one of our tables we rename the attribute Department_ID, 

• we insert to Departments a new row with an ID equal to the ID of another row, and in that way, we 

spoil the unambiguity of the key Department_ID.  

The fact that two tables are in the relation (1-M) may be used when we generate reports or create new tables. 

However, checking each time, if two given tables are in the (1-M) relation, would not be very practical. It is 
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much better to declare in advance that such a relation should hold, and then make sure that the database engine 

does not allow to violate that declaration. 

In our example, the declaration of (1-M) relationship between Departments and Employees is implicit in the 

declarations of the corresponding table-variables: 

• in the declaration of Departments, the attribute Department_ID is declared as a PRIMARY KEY; recall that 

every primary key has to be unambiguous, 

• in the declaration of Employees, the attribute Department_ID is linked to the table Departments by the 

constrain REFERENCES Departments. 

The establishment of a relation (1-M) between tables has consequences for operations on these tables. For 

instance: 

• Introducing an employee who has been employed in a non-existent department is impossible. The 

database-engine will force the programmer to introduce the new department in the first place. 

• A department’s record cannot be removed from a table until there are employees employed in that 

department. An alternative solution is that in such a case, all employees of the deleted department are 

“automatically” removed. 

• One can request the generation of a table with three columns that combine information from both 

linked tables, e.g., with columns Name, Department_name, City. 

A particular case of a (1-M) relation is a (1-1) relation, where for every record in a parent table, there is at 

most one record in the corresponding child table. Notice that “at most one” rather than “exactly one”, which 

means that (1-1) relation does not need to be symmetric. Consequently, one of these tables is a parent and 

another ― a child. 

To formalize the investigation on parent-child relations, we introduce the concept of a parent-child graph 

(MON) which is an arbitrary finite (possibly empty) set of triples of identifiers: 

pcg : ParChiGra = FinSub(Identifier x Identifier x Identifier) 

The elements of this set are called parent-child edges. Intuitively every edge (ide-c, ide, ide-p) corresponds 

in a database to a relation, which holds between the tables named ide-c (child), ide-p (parent) with the primary 

key ide.  

9.5 Instructions of table modification 

Tables that have been declared or made accessible (see Sec. 10.9.6.11) may be modified using a large class of 

instructions. Below a few examples: 

Entering a new column to a table: 

ALTER TABLE Employees  
ADD COLUMN ID_number CHAR(11) DEFAULT NULL 

We add a column to a table, and we indicate a default value for that column.  

Deleting a column from a table 

ALTER TABLE Departments 
DROP COLUMN Department_ID CASCADE (or RESTRICT) 

If this instruction is executed with the option CASCADE, then the deletion of a column results in the deletion 

of all objects of a database (tables, perspectives,…) that refer to that column. In the case of RESTRICT, the 

instruction is not executed whenever such objects exist in the database.   

Notice that the instructions from the group ALTER TABLE modify not only the content (the data) of a table 

but also its type. There are other examples of instructions altering tables ([54] p. 49): 
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• ALTER COLUMN — column-type is modified by SET DEFAULT or DROP DEFAULT, which sets or drops 

a default value. 

• ADD — new constraint is added to an existing column. 

• DROP CONSTRAINT — the removal of a constraint from an indicated column. With this instruction, 

RESTRICT or CASCADE must be set. 

Another group of table-modifying instructions changes the content of a table without modifying its type. Some 

typical examples are: 

The insertion of a new record (row): 

INSERT INTO Departments  
VALUES (095, ‘Marketing’, ‘London’) 

This instruction may also be written in a form where column names are explicit (cf. [46], p. 73) 

INSERT INTO Departments (Department_ID, Dep_name, City) 
VALUES (095, ‘Marketing’, ‘London’) 

The modification of all data in one column. E.g., the increase of salaries of all salesmen by 10%: 

UPDATE Employees  
SET Salary = Salary * 1,1  
WHERE Position = ‘salesman’ 

The removal of all rows that satisfy a given condition. E.g., the removal of all employees who have no 

position: 

DELETE FROM Employees  
WHERE Position IS NULL 

A particular situation takes place if we drop a row with a primary key which is a foreign key in a child-table, 

e.g.: 

DELETE FROM Departments 
WHERE Dep_name = ‘production’  

If in the child table Employees the key Department_ID is ― as in our case ― a foreign key and there exist rows 

which point to the rows that are supposed to be deleted from Departments, then the operation is not executed 

and an error message is generated. However, the operation:  

DELETE FROM Departments 
WHERE Dep_name = ‘production’ CASCADE 

will be executed, and additionally, in the table Employees, all rows that point to the row, which is deleted from 

Departments, are deleted as well122. 

9.6 Transactions 

By a transaction, we mean a sequence of instructions closed (or not) in some parentheses such as, e.g., BEGIN 
TRANSACTION and COMMIT TRANSACTION123. The mechanism of transactions that we shall call a recovery 

mechanism (MON) stops the execution of a transaction whenever: 

• the execution would violate some integrity constraints, or 

• the execution is impossible, e.g., we search for a non-existing element in a table. 

 
122 There is a certain inconsistency in SQL compared with the deletion columns. In the case of rows option RESTRICT 

is set by the system without the possibility of choosing another option by the user.  
123 These parentheses may differ between applications (some manuals are not mentioning them at all). Here we use 

the notation of Bena Forty ([48], p. 175) which is a standard for Microsoft SQL Server. 
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In all such cases, the implementation returns to the initial database state of the transaction, a state called the 

roll-back value of the database124.  

Five following instructions are used to control the recovery mechanism of transactions in SQL-programs: 

SAVEPOINT      ― save rollback-value of a database 

RELEASE SAVEPOINT  ― delete rollback-value 

ROLLBACK      ― call-of transaction 

IF         ― a conditional activation of a rollback  

COMMIT TRANSACTION  ― accept transaction.  

The instruction 

SAVEPOINT savepoint-name 

assigns the actual database value to a temporary user-defined variable savepoint-name. The instruction 

RELEASE SAVEPOINT savepoint-name 

 deletes the variable savepoint-name (and its value) from the state. The instruction 

ROLLBACK savepoint-name 

brings the database to its rollback-value and deletes the variable savepoint-name. This instruction may also 

appear without a parameter, in which case the database is (probably?) rolled back to the value initial of trans-

action-execution125. In such cases, the execution of a transaction should start with a default SAVEPOINT, which 

saves database value to some system variable. It also seems that ROLLBACK aborts program execution and 

generates an error message.  

To make the execution of ROLLBACK dependent on an error message, one may use the conditional IF con-

structor. Ben Forta ([48] p. 179) shows the following example: 

IF @@ERROR <> 0 ROLLBACK savepoint-name 

It is explained there that @@ERROR is a system-variable whose value equals 0 it there is no error message, 

and (I guess) equals an error message in the opposite case. 

This example suggests ― although this has not been explicitly written ― that the condition of IF might be 

of the form 

@@ERROR = error-message 

with a specific error message. Such a solution would allow making the execution of ROLLBACK dependent on 

the type of an error.  

The execution of COMMIT results in saving the result of the transaction and deleting all earlier declared 

rollback-variables.  

For instance, in a database carrying data about bank customers, the transaction that moves 1000 $ from one 

account to another may have the following form: 

 BEGIN TRANSACTION 
SAVEPOINT start 
UPDATE Accounts 

SET Balance = Balance – 1000  
WHERE ClientID = 1250 ; 

IF @@ERROR <> 0 ROLLBACK start ; 
UPDATE Accounts 

 
124 I have to warn the reader that in all known to me manuals, transactions are described in an exceptionally unclear 

and incomplete way, and therefore my understanding of this construction is based more on guesses than on facts. 
125 The parameter less version of this instruction appears in the majority of manuals known to me. 
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SET Balance = Balance+ 1000 
WHERE ClientID = 1260 ; 

IF @@ERROR <> 0 ROLLBACK start  
COMMIT TRANSACTION  

The first ROLLBACK takes place if there is no customer in the database with ID equal to 1250, or if its balance-

value is less than 1000. The second ROLLBACK is activated if the first is not, but there is no customer in the 

database with ID equal 1260.  

Notice that after the execution of the first UPDATE, the actual sum of all deposits is not equal to the bank-

balance of deposits, which means that the integrity constraints are violated. The second UPDATE “removes” 

this violation, but if it can’t be performed because of the lack of 1260-customer, then the transaction would 

end with an inconsistent database. The second ROLLBACK prevents such a situation. 

9.7 Queries 

Queries are used to collect information from databases, and more precisely ― from one or more database 

tables. The execution of a query results in the generation of a table and possibly in displaying it on a monitor. 

Queries are constructed by several variants of operator SELECT. Below a few typical examples: 

The selection of indicated columns of a table: 

SELECT Name, Salary, Position  
FROM Employees 

As a result of this query, a monitor displays a three-column table with columns indicated by the parameters of 

SELECT.  

The selection of columns combined with the filtering of rows: 

SELECT Name, Salary, Position  
FROM Employees  
WHERE Department_ID = 10  

In WHERE clause, we may have boolean expressions with operators on simple data described in Sec. 9.2. 

Queries may be composed of other queries using operators called by Banachowski [9] “algebraic operators 

on queries”. These operators may be applied to more than one table. For instance: 

SELECT Department_ID  
FROM Departments 

EXCEPT 
SELECT Department_ID  

FROM Employees  

This query generates a one-column table of the IDs of these departments that appear in the table Departments 

but that do not appear in the table Employees. i.e., the IDs of departments with no employees.  

A specific group of queries allows reaching more than one table. In such a case, we say that queries use the 

joins of tables. Below we see an example of a query that selects data from two tables ―  Employees and 

Departments. 

SELECT Employee_ID, Name, Department_ID 
FROM Employees, Departments 

WHERE Employees.Department_ID = Departments.Department_ID  
AND Departments.City = ‘London’  

This query generates a three-column table where each row contains the ID of an employee, his/her name, and 

the name of the department where he/she is employed. The condition in WHERE-clause is called a joint pred-

icate. In our case, it returns only such rows where employees are employed in departments located in London. 
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In WHERE-clauses, we may use boolean expressions exploring basic predicates on simple data (Sec. 9.2), 

e.g.:  

SELECT Employee_ID, Name, Salary 
FROM Employees 
WHERE Salary > 1000  AND  Salary <= 2000 

or set-theoretic operators. For instance, the query: 

SELECT Employee_ID, Name, Position, Salary 
FROM Employees 
WHERE Position IN (‘cashier’, ‘salesman’, ‘manager’).  

generates a table with cashiers, salesmen, and managers. The query: 

SELECT Employee_ID, Name, Position, Salary 
FROM Employees 
WHERE Salary > ALL 

(  
SELECT Salary 
FROM Employees  
WHERE Position = ‘cashier’   

) 

generates a table that shows employees with salaries higher than the salaries of all cashiers. In this case, we 

have to do with a nested query, where the inner SELECT generates a column with the salaries of all cashiers. 

Let us denote: 

sae : SalEmp  ― the set of values in the column Salary of the table Employees, 

sac : SalCas  ― the subset of SalEmp that contains the salaries of cashiers, 

shc : SalHigCas ― the subset of SalEmp that contains salaries higher than the salaries 

        of cashiers 

In that case: 

SalHigCas = { sae | sae : SalEmp and (∀ sac : SalCas) sae > sac } 

therefore: 

SalHigCas = { sae | sae : SalEmp and all.(SalCas, >).sae = tt } 

where > is a predicate that compares numeric values and assumes ee whenever at least one of its arguments 

is not a numeric value. 

The transparency of > implies that the set SalHigCas contains numbers only, although it may be empty as 

well. In particular, it is empty, if SalCas contains at least one not-number.  

In none of the bibliographic sources, I found information about what happens, if inequality sae > sac 

generates an error. Will it interrupt a program and generate an error, or the query will generate some “unex-

pected” table, maybe empty?. 

Let us consider now a query that results from the former if ALL is replaced by EXISTS, i.e., that generates 

the table of employees with salaries higher than the salary of at least one cashier126:  

SELECT Employee_ID, Name, Position, Salary 
FROM Employees 
WHERE Salary > EXISTS  

( 

 
126 In this case I use a syntax which is ― maybe ― not compatible with SQL. I used it, however, to keep the similarity 

with the ALL example, whose syntax (although not the example itself) has been taken from [72] p. 139.  
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SELECT Salary 
FROM Employees 
WHERE Position = ‘cashier’  

) 

Denote: 

shs : SalHigSomCas  — salaries higher than some salaries of cashiers. 

In that case: 

SalHigSomCas = { sea | sea : SalEmp and (∃ sac : SalCas) sea > sac } 

hence: 

SalHigSomCas = { sea | sea : SalEmp and exists.(SalCas, >).sac = tt } 

In that case, contrary to the former, if SalCas contains not-numbers, then the set SalHigSomCas does not 

need to be empty. 

Notice now that whenever the evaluation of sae > sac for some sac, generates an error, then 

exists.(SalCas, >).sac = ff 

If, however, we replace EXISTS by SOME, then ee may appear. This replacement does not change the table 

generated by our query but affects error generation. 

Quantifiers may also appear in the context of joining tables. The query shown below generates the table of 

departments where at least one employee is employed. 

SELECT Department_ID 
FROM Departments 
WHERE Department_ID = EXISTS 

(  
SELECT Department_ID 
FROM Employees 

)  

As was mentioned in Sec. 9.2, for every simple operator, there exists its negated version, e.g., = and <>, LIKE 
and NOT LIKE, etc. Similarly, we have NOT IN. In the case of set-theoretic quantifiers, I have found only NOT 
EXISTS and only in [72] p. 147 and in [46] p. 242. Of course, none of these sources concerns the case where 

EXISTS generates an error. 

From a denotational perspective, queries may be regarded as expressions since they generate a value (a 

table) without changing a state. 

9.8 Aggregating functions 

The aggregating functions SUM, MAX, MIN, AVG take as arguments one-column tables that are the results of 

queries and return a number. If the argument-table is empty, then the value of an aggregating function is NULL 

([54] p. 148). 

Function COUNT takes an arbitrary one-column table and returns the number of these rows where NULL 

does not appear. In turn, COUNT(*) takes an arbitrary table and counts all rows, including duplicates ([72] p. 

155). 

9.9 Views 

If we want to use a query more than once, we may declare it as a procedure. Such procedures are called views. 

Below we see an example of a view-declaration: 

CREATE VIEW Officials 
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(Employee_ID, Name, Salary) 
AS SELECT Employee_ID, Name, Salary 

FROM Employees  
WHERE Position = ‘official’  

This view is named Officials and creates a three-column table by selecting columns from Employees and rows 

with ‘official’ that stands in the column Position.  

Since views are procedures, they have no counterparts in syntax (cf. Sec. 6.1.3). At the syntactic level, we 

only have view declarations CREATE VIEW and view calls (MON) that refer to the names of views. 

View calls may be used in queries in the same way as tables and, of course, a view is executed in the call-

time state rather than in the declaration time state. In SQL-manuals, views are, therefore, referred to as virtual 

tables. Views may also be called in instructions that create or modify tables. Consider the following view-

declaration: 

CREATE VIEW Salesmen 
AS SELECT * FROM Employees 
WHERE Department_ID = 20  

In this declaration, the star “*” means that we chose all columns, and the number 20 is the ID of the sales 

department. Calling the view Salesmen we can create an instruction that modifies the table Employees by in-

creasing the salaries of all salesmen by 10%: 

UPDATE Salesmen 
SET Salary = Salary * 1,1. 

In the case of using vies for the modifications of tables, each SQL engine has its specific restrictions. E.g., 

MySQL requires that in SELECT-clauses, only column names may appear.  

A special case are views with check option which force the checking of a condition when views are used in 

instructions. Banachowski [9] shows an example of such a view: 

CREATE VIEW Employees_on_not-payed_holiday 
AS SELECT * 
FROM Employees 
WHERE Salary = 0 OR Salary IS NULL 
WITH CHECK OPTION 

If this view is used in the instruction:  

UPDATE Employees_on_not-payed_holiday 
SET Salary = 1000 
WHERE Name = ‘Smith’ 

then it is not executed if the salary of Smith is 0 or NULL. 

9.10 Cursors 

Cursors are used to assign selected rows of tables to data variables. This mechanism allows for processing 

database data using programs written in user-interface programming languages such as API of CLI (see Sec. 

9.1). A cursor points to a row in an indicated table and allows us to get data from that row. Tables indicated 

by cursors are defined using queries. As a matter of fact, we should not talk about a cursor as such, but about 

a cursor of a table, or maybe about a cursor of a query. 

Cursors are created using cursor declarations, which assign a cursor to a cursor name (an identifier). Such 

declarations are of the form127: 

DECLARE cursor_name IS  

 
127 The syntax of a cursor-declaration depends upon application. Here I use the syntax of ORACLE ([72] p. 352). 
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SELECT … 

After a cursor has been declared, it is not yet ready for use. To make it ready, we have to apply an opening 

instruction of the form: 

OPEN cursor_name. 

This instruction causes the execution of SELECT, which appears in the declaration and (I guess) in the setting 

of the so-called cursor grasp at the “position” preceding the first row of the generated table. The operation of 

getting data from a table is: 

FETCH NEXT cursor_name INTO variable 

The NEXT means getting the data of the row next to the grasp and moving the grasp one row further. It seems, 

therefore, that OPEN sets the cursor before the first row.  

The FETCH NEXT instruction is usually applied in a program loop, which means that when a grasp reaches 

the last row of a table, it cannot be moved further, I have found only one comment on that issue in [72] p. 353 

(my translation from the text in Polish): 

In every implementation of databases, cursors are implemented in a slightly different way, but each of them 

enables a correct cursor-closing without an unnecessary generation of errors.  

If a cursor is temporarily not needed, we close it by instruction: 

CLOSE cursor_name 

This instruction leaves the cursor structure for reopening.   

9.11 The client-server environment 

So far, when talking about SQL-systems, we were assuming tacitly that the user has a database to his/her 

excluded disposal. However, this is usually not the case. In general, there is more than one user, which means 

that we need tools to give them and deny access to databases. Here is an instruction scheme which sets a lock 

on a given table: 

LOCK TABLE table_name 
IN [SHARE | EXCLUSIVE] 
[NOWAIT] 

where the options in square-brackets mean the following: 

• SHARE —  the lock applies to all users, 

• EXCLUSIVE  —  the lock applies to all users except the one who sets the lock, 

• NOWAIT —  do not wait for lock setting, if it cannot be set at the moment.  

Locks are removed by instructions COMMIT or ROLLBACK. An example of an instruction which gives permis-

sions to a given user may be: 

GRANT SELECT, UPDATE (Salary) 
ON Employees 
TO Smith  

This instruction grants the permission of performing SELEC and UPDATE in the table Employees to the user 

Smith.  

These mechanisms of SQL may differ between the application, but since they are relatively simple to de-

scribe, I shall not discuss them later. For that reason, they will not be included in Lingua-SQL. 
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10 LINGUA-SQL 

10.1 General assumptions about the model 

As was already explained, Lingua-SQL does not rely on any existing SQL-engine but on its own database-

operations. The denotational model of that language will be built as an extension of Lingua-2 model by add-

ing: 

1. new domains of data including specific SQL simple data, rows, tables and databases,  

2. the corresponding new domains of bodies, composites, values, and denotations, 

3. new operations defined on new domains. 

Technically the SQL-part of our model will be built in a slightly different way than in the case of Lingua-2. 

This difference concerns the applicative part of the model, where we skip constructors of composites and 

proceed straight to constructors of value. We proceed in this way since operations on rows and tables involve 

yokes, which are not available at the level of composites.  

Similarly, as in the previous versions of Lingua, we do not pretend here to build a practical repertoire of 

SQL-tools. Our goal is just to show a denotational framework for databases, rather than to build a real API. 

Hopefully, this framework will allow building a real language in some future. 

10.2 Data 

SQL data are separated from the data of Lingua-2 in the sense that lists, records, and arrays of Linguga-2 do 

not carry rows, tables, and databases of Lingua-SQL and table fields of Lingua-SQL do not contain lists, 

records, and arrays of Lingua-2. At the same time, however, the extended repertoire of SQL simple-data is 

available for the constructors of lists, records, and arrays. 

The only new simple data in Lingua-SQL are associated with time, i.e., with calendars and clocks, and are 

the following: 

dat : Date    = Year x Month x Day 

tim : Time    = Hour x Minute x Second 

dti  : DateTime  = Date x Time 

where: 

yea : Year    = {0,…,9999)                       (just an example) 

mon  : Month   = {1,…,12} 

day   : Day    = {1,…,31} 

hou  : Hour   = {0,…,23} 

min  : Minute  = {0,…,59} 

sek  : Second   = {0,…,59} 

The remaining data domains of Lingua-SQL are defined by the following equations: 
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dat : SimData = Boolean | Integer | Real | Word | Date | Time | DateTime | {ϴ}   simple data 

 

dat : NdbData = SimData | List | Array | Record               non-database data128 

lis  : List   = NdbDatac* 

arr : Array  = Number ⟹ NdbData 

rec : Record = Identifier ⟹ NdbData 

 

dat : SqlData = Row | Table                       SQL data 

row  : Row   = Identifier ⟹ (SimData | {ϴ}) 

tab  : Table  = Rowc* 

 

dat : Data  = NdbData | SqlData 

 

The symbol ϴ represents an empty field of a row and is called an empty data129. Empty data will never appear 

as values of expressions and will never be assigned to variables in states. Of course, since tables are lists of 

rows, empty data will appear in tables. 

Databases do not appear at the level of data. They will be defined at the level of values (Sec. 0), where we 

can define integrity constraints represented by yokes and subordination relations. 

In Lingua-SQL, primary operations on data include all primary operations of Lingua-A (Sec. 4.3.1) ap-

propriately extended to a new set of simple data, plus operations corresponding to time-oriented data, rows, 

and tables. Operations on time-oriented data are assumed to be parameters of our model. 

The subcategories of numbers such as INTEGER, SMALLINT, BIGINT, DECIMAL(p, s), or of words CHARAC-
TER(n), CHARACTER VARYING(n), BLOB, may be described by types with appropriate yokes  

The relation equal introduced in Sec. 4.3.1 is extended to new simple data in a natural way.  

At the level of domain equations, tables may contain rows of different lengths and different attributes. Of 

course, such tables will not be reachable. A table with an empty tuple of rows is called an empty table and is 

denoted by ( ).  

Notice that rows and tables, similarly to list, arrays, and records, carry data rather than composites or values.  

10.3 Subordination of tables 

Subordination relations describe binary relationships that can hold between tables. Let then A and B be tables 

and let ide be an attribute that appears in both of them. Let A.ide and B.ide be the corresponding columns in 

these tables.  

We say that A is subordinate to B at ide or that B is superior to A at ide ― alternatively, we say that A is 

a child and B is a parent ― that we write as 

A sub[ide] B 

if the following three conditions are satisfied: 

1. an ide-column appears in both tables, 

 
128 They are called “non-database” rather than “non-sql” since time-oriented data are coming from SQL.  
129 Note that ϴ, which is assignable to fields of rows is different from Ω which is assigned to a variable at declaration-

time.  
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2. column B.ide is repetition-free which means that each of its elements unambiguously identifies the 

row, where it belongs, 

3. column A.ide contains only the data that appear in B.ide, which ― together with 2. ― means that 

each row of A unambiguously points to a row in B.  

 

  

 

 

 

Fig. 10.3-1 Employees is a subordinate to Departments at Department 

On Fig. 10.3-1, we see an example where the following relation holds: 

Employees sub[Department] Departments 

The attribute ide is called a subordination indicator (MON) for A and B. The column A.ide is said to be a 

subordinated column for B.ide. If in column B.ide there is an element which appears in A.ide more than once 

(more than one employee is employed in the same department), then we say that our subordination relation is 

of type (1-M), read one-to-many. In the opposite case, we say that it is of (1-1) type. Notice that in both cases, 

there may be some elements in the superior column that do not appear in the subordinated column (depart-

ments with no employees). It means that a (1-1) relationship does not need to be symmetric.  

Notice that the subordination relation concerns tables rather than table composites, which means that to 

decide if that relation holds, we do not need to compare bodies.  

As one may easily check, subordination relations between tables (they may be more than one) may be 

spoiled in four following cases: 

A. if we remove a column assigned to a subordination indicator (condition 1), 

B. if we add such a row to a parent table B that introduces repetition to the indicator-column (condition 

2), 

C. if from a parent table B we remove a row pointed to by a row of the child table A (condition 3), 

D. if to a child table A, we add a row that introduces to the indicator column an element that does not 

appear in the indicator column of the parent table (condition 3). 

States of programs operating on databases have to carry information about declared subordination relations 

between tables. To include this mechanism in our model, we use the concept of a subordination graph (MON) 

defined as a set of triples of identifiers: 

sgr : SubGra = Sub.(Identifier x Identifier x Identifier)130 

Each tuple (ide-c, ide, ide-p) in sgr is called an edge of the subordination graph, where ide-c (child) and 

ide-p (parent) play the role of graph nodes, and ide is a label of the edge. In the context of a given state, each 

edge expresses the fact that a subordination relation holds between the tables named ide-c and ide-p, where 

ide is the subordination indicator.  

About the subordination graphs, we assume only that ide-c ≠ ide-p, although cycles are allowed. Notice 

also that there may be many edges starting in one node (one child may have many parents), and many edges 

may end in one node (many children may have a common parent).  

 
130 Notice that since the set Identifier is finite, each subordination graph is finite as well. This is why we use here the 

operator Sub rather than FinSub. 

A: Employees 

Name Department 

Fog Distribution 

Pickwick  Distribution 

Weller Kitchen 

 

B: Departments 

Department City 

Distribution London 

Bookkeeping Manchester 

Kitchen Edinburgh 
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10.4 Bodies 

The domains of bodies in Lingua-SQL are defined by the following equations, where q marks body initials 

related to SQL: 

 

bod : SimBody  = {(‘boolean’), (“number’), (‘word’), (‘date’), (‘time’), (date-time’)}   simple bodies 

 

bod : NdbBody = LisBody | ArrBody | RecBod            non-database bodies 

bod : LisBody  = {‘L’} x NdbBody                     list bodies 

bod : ArrBody  = {‘A’} x NdbBody                      array bodies 

bod : RecBody  = {‘R’} x BodRec                    record bodies 

 

bod : RowBody = {‘Rq’} x BodRow                    row bodies 

bod : TabBody = {‘Tq’} x Row x RowBody                   table bodies 

 

bod : Body  = NdbBody | RowBody | TabBody 

bod : BodyE  = Body | Error 

 

where: 

 

bor : BodRec  = Identifier ⟹ NdbBody                   body records 

bor : BodRow = Identifier ⟹ SimBody                     body rows 

 

Rows contained in table bodies carry information about default data for columns. Default data may be empty, 

i.e., equal to ϴ. Of course, the list of attributes of the default-data row must coincide with the list of the 

attributes of the row body. This property will be insured by table-body constructors. It is worth noticing in 

this place that that bodies of tables include data (rows).  

Since BodRow ⊆ BodRec, we use the same metasymbol bor to denote the elements of both. 

The function CLAN-Bo from Lingua-2 is extended in an obvious way on row bodies. In the case of table 

bodies, we assume that for in each table in CLAN-bo.(‘Tq’, row, bod): 

1. all rows must belong to CLAN-bo.bod, which implies that bod must be a row body, 

2. all rows must carry non-empty data in the fields whose default data (indicated by row) are non-empty, 

although they do not need to be the default data. 

Default data will be used when adding a new row (Sec. 12.2.6) or a new column (Sec. 12.2.7) to a table.  

We assume that empty table ( ) belongs to the clan of every table body. The function sort (Sec. 4.3.3) is 

extended in an obvious way to new bodies. 

Body constructors in Lingua-SQL include all body constructors of Lingua-2, which are appropriately 

extended to cover new simple data. Additionally we have constructors for row bodies and table bodies.  

Here we are coming to a certain singularity of the SQL applicative layer. Whereas in Lingua-A we have 

defined algebras of bodies, composites, transfers and yokes successively one after another, now some of row 
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constructors will take composites as arguments, and composite constructors will take transfers and yokes. 

Formally this means that we define one algebra of bodies, composites, transfers and yokes. 

Row constructors 

bo-create-ro   : Identifier x BodyE    ⟼ BodyE        create a one-attribute row 

bo-add-to-ro   : Identifier x BodyE x BodyE ⟼ BodyE          add an attribute to a row 

bo-cut-from-ro : Identifier x BodyE     ⟼ BodyE          remove an attribute from a row 

bo-get-from-ro : Identifier x BodyE    ⟼ BodyE          select a body from a row 

bo-check-in-ro : Identifier x BodyE x BodyE ⟼ BodyE          check if bodies coincide  

All these constructors except bo-cut-from-ro are defined analogously to the constructors of record bodies 

(Sec. 4.3.2). The cut-constructor will be used by the operation of removing a column from a table (Sec. 10.5.5). 

At the level of rows it removes an attribute from a row.  

Table constructors 

bo-create-empty-table : CompositeE   ⟼ BodyE 

bo-add-ro-to-tb    : BodyE x BodyE  ⟼ BodyE 

bo-get-ro-from-tb    : BodyE     ⟼ BodyE 

bo-join-tb       : BodyE x BodyE ⟼ BodyE 

Below we give the definitions of table-body constructors. The definitions of remaining constructors are left to 

the reader. 

bo-create-empty-table : CompositeE   ⟼ BodyE 

bo-create-empty-table.com = 
 com : Error  ➔ com 
 sort.com ≠ ‘Rq’ ➔ ‘row-expected’ 
 let 
  (row, bod) = com 
 true     ➔ (‘Tq’, row, bod) 

This constructor builds a table body out of a composite whose row becomes the row of default data and whose 

body becomes the common body of all future rows of the table. The fact that we start from a composite 

guarantees that row : CLAN-bo.bod. 

bo-add-ro-to-tb : BodyE x BodyE  ⟼ BodyE 

bo-add-ro-to-tb.(bor-r, bod-t) = 
 bod-i : Error   ➔ bod-i  for i = r, t 

sort.bod-r  ≠ ‘Rq’ ➔ ‘row-expected’ 
sort.bod-t ≠ ‘Tq’ ➔ ‘table-expected’ 
let 
 (‘Rq’, bod-r))    = row-r 
 (‘Tq’, row-d, bod-rt)) = bod-t 
bod-r ≠ bod-rt   ➔ ‘bodies-not-compatible’ 
true      ➔ bod-t 

This constructor does not create a new body but only checks it first argument is a row body, second argument 

is a table body, and if the row body is compatible with the table body. This constructor anticipates the fact that 

adding a row to a table does not change the body of that table. 

bo-get-ro-from-tb : BodyE ⟼ BodyE 

bo-get-ro-from-tb.bod = 
 bod : Error   ➔ bod 
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 sort.bod ≠ ‘Tq’ ➔ ‘table-expected’ 
 let 
  (‘Tq’, row, bod-r) = bod 
 true     ➔ bod-r 

If we select a row from a table, then the body of this row equals the row body of the table.  

bo-join-tb : BodyE x BodyE ⟼ BodyE 

bo-join-tb.(bod-1, bod-2) = 
 bod-i : Error  ➔ bod-i      for i = 1,2 
 sort.bod-i ≠ ‘Tq’ ➔ ‘table-expected’  for i = 1,2 
bod-1 ≠ bod-2  ➔ ‘bodies-not-compatible’ 
true      ➔ bod-1 

This constructor only checks if the argument bodies are table bodies, and if they are equal.  

10.5 Composites 

The domain of composites in Lingua-SQL is defined in the same way as in Lingua-A (Sec. 4.3.3), i.e., by 

domain equations: 

com : Composite  = {(dat, bod) | dat : CLAN-Bo.bod}  

com : CompositeE  = Composite | Error 

This definition means, in particular, that the fields of rows and tables carry data, rather than composites. For 

technical reasons we introduce an auxiliary domain of simple composites: 

com : SimCom = {(dat, bod) | (dat, bod) : CompositeE and bod : SimBody} 

We also assume that for every simple body bod 

ϴ : CLAN-Bo.bod 

i.e., that (ϴ, bod) is a composite. 

SQL constructors of composites will be defined in a way analogous to that described in Sec. 4.3.3. Of 

course, they should satisfy the rule that whenever a SQL operation generates an error, then the corresponding 

Lingua-SQL constructor of composites should also generate an error. At the same time, whenever in a SQL 

API’s “one cannot expect a meaningful result” (cf. Sec. 9.2), our constructor should generate an error as well.  

Before we proceed to the definitions of SQL-constructors of composites, we have to take an engineering 

decision of choosing one of the two following strategies: 

1. for every future operation available at the level of syntax, we create an individual composite construc-

tor, or 

2. we define some basic composite constructors, and later all remaining constructors are defined as their 

combinations. 

For instance, a replacement of a data in a table may be described as one table-to-table constructor or as a 

combination of the replacement of a data in a row and a row in a table.  

The first option seems closer to SQL tradition. It leads, however, to long lists of constructors “one for each 

case” and may result in an imperfect understanding of language semantics. We choose, therefore, the second 

option which ― hopefully ― will contribute to: 

1. a simpler description of the language,  

2. a shorter list of program-building rules, 

3. the restriction of interpreter’s source-code for Lingua-SQL to basic constructors, and the definition of 

other constructors as procedures from the level of our language. 
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10.5.1 Signatures of composite constructors 

We assume that all composite constructors of Lingua-A are available in Lingua-SQL. We also assume that 

SQL-constructors of new simple composites (composites that correspond to simple data) are regarded as pa-

rameters of our model, and therefore we skip their definition. The remaining SQL constructors are split into 

groups corresponding to categories of data.  

Unlike in Lingua-A, some of our constructors take bodies, transfers, and yokes as arguments. Of course, 

the domains of transfers and yokes will be extended to the new domain of composites.  

 

A constructor of empty composites 

empty : BodyE ⟼ CompositeE 

 

The constructors of row composites 

co-create-ro   : Identifier x CompositeE        ⟼ CompositeE 

co-add-to-ro   : Identifier x CompositeE x CompositeE   ⟼ CompositeE 

co-cut-from-ro  : Identifier x CompositeE         ⟼ CompositeE 

co-get-from-ro  : Identifier x CompositeE         ⟼ CompositeE 

co-change-in-ro  : Identifier x CompositeE x Transfer x Yoke ⟼ CompositeE 

 

Row constructors of table composites 

co-create-empty-table : CompositeE          ⟼ CompositeE 

co-add-ro-to-tb    : CompositeE x CompositeE     ⟼ CompositeE 

co-cut-ro-from-tb   : Yoke x CompositeE        ⟼ CompositeE 

co-get-ro-from-tb    : Yoke x CompositeE        ⟼ CompositeE 

co-exclude-ro-from-tb : CompositeE x CompositeE     ⟼ CompositeE 

co-filter-ro-in-tb    : Yoke x CompositeE        ⟼ CompositeE 

co-join-tb      : CompositeE x CompositeE     ⟼ CompositeE 

co-intersect-tb    : CompositeE x CompositeE     ⟼ CompositeE 

 

Column constructors of table composites 

co-add-co-to-tb    : Identifier x CompositeE x CompositeE  ⟼ CompositeE 

co-cut-co-from-tb   : Identifier x CompositeE       ⟼ CompositeE 

co-filter-co-from-tb  : AcPaDe x CompositeE       ⟼ CompositeE 

co-change-co-in-tb : Identifier x CompositeE x Yoke    ⟼ CompositeE 

co-get-co-from-tb  : Identifier x CompositeE       ⟼ ColumnE 

 

Table constructor creating a derivative table (Sec. 10.5.6) 

co-create-der-tb : CompositeE x CompositeE x Identifier x Yoke ⟼ CompositeE 
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10.5.2 Constructors of simple composites 

We assume that the constructors of simple composites in Lingua-SQL cover: 

• all constructors of simple composites from Lingua-2, 

• the zero-argument composites generating new simple composites, 

• some repertoire of operations and predicates on such composites whose examples were shown in Sec. 

9.2. 

This set of constructors is regarded as a parameter of our model. We only assume that it contains a special 

constructor that to each body assigns a composite with the empty data (it corresponds to an empty field of a 

row or of a table). 

empty : BodyE ⟼ CompositeE 

empty.bod =  
 bod : Error     ➔ bod 
 not bod : SimpleBod ➔ ‘simple-body-expected’ 
 true       ➔ (ϴ, bod) 

Since we have assumed earlier that ϴ belongs to the clan of each body, each (ϴ, bod) is a correct composite. 

10.5.3 Constructors of row composites 

SQL row constructors, although close to record constructors (Sec. 4.3.3), differ from them in two ways: 

1. they allow for the construction of only such rows, whose attributes carry simple data, 

2. an attribute may carry the empty data ϴ. 

In the second case, we have to do with an empty field, which may be later filled with a data of an appropriate 

sort. 

Below three examples of definitions. 

 

Add an attribute to a row 

co-add-to-ro : Identifier x CompositeE x CompositeE ⟼ CompositeE 

co-add-to-ro.(ide, com-s, com-r) =                         (s – simple, r – row) 

 com-i : Error    ➔ com-i  for i = s, r 
let 

  (dat-s, bod-s) = com-s 
  (dat-r, bod-r)  = com-r 
  bod-nr    = bo-add-to-ro.(ide, bod-s, bod-r)            (-nr – new row) 

 bod-nr : Error   ➔ bod-nr 
let 

new-com = (dat-r[ide/dat-s], bod-nr) 
 oversized.new-com ➔ ‘overflow’ 
 true       ➔ new-com 

 

Adding an attribute to a row composite extends both ― the row (data) and its body ― which guarantees that 

the new composite is well-formed. We assume that body constructor bo-add-to-ro makes all necessary 

checks, and if they do not raise errors, extends body bod-r by new attribute ide. 

 

Get a data from a row 
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co-get-from-ro : Identifier x CompositeE ⟼ CompositeE 

co-get-from-ro.(ide, com) =  
com : Error  ➔ com 
let 

  (dat, bod) = com 
  bod-a  = bo-get-from-ro.(ide, bod)              body assigned to attribute ide 

 bod-a : Error  ➔ bod-a  
 dat.ide = ϴ  ➔ ‘empty-field’ 

let 
(‘Rq’, bor) = bod 

true     ➔ (dat.ide, bod-a) 

 

We assume that bo-get-from-ro performs all necessary checks. Note that we do not need to check if dat.ide 

is defined because this follows from the fact that bod-a is not an error, and (dat, (‘Rq’, bor)) is a composite. 

 

Change a data in a row conditionally 

co-change-in-ro : Identifier x CompositeE x Transfer x Yoke ⟼ CompositeE 

co-change-in-ro.(ide, com, tra, yok) = 
 com : Error    ➔ com 
 tra.com   : Error   ➔ tra.com 
 yok.com : Error   ➔ yok.com 

let 
  (dat-r, bod-r) = com 

(dat-t, bod-t) = tra.com 
  bod-c   = bo-check-in-ro.(ide, bod-r, bod-d) 
 bod-c : Error    ➔ bod-c 

(dat-y, bod-y) = yok.com 
let 

new-com =  
dat-y = tt ➔ (row-r[ide/dat-t], bod-r) 
true   ➔ com 

 oversized.new-com ➔ ‘overflow’ 
 true       ➔ new-com 

 

The new data dat-t that is assigned to ide in the row of com is created by the application of transfer tra to the 

row composite com. The assignment takes place under the condition that the row composite satisfies yok. 

Before new data is inserted into the row, it is checked if its body is compatible with the body assigned in the 

row to the identifier ide.  

10.5.4 Row constructors of table composites 

Table constructors are used in the definitions of table transformations, views and queries. These constructors 

are split into two groups: row constructors and column constructors. To define them some auxiliary concept 

are needed.  

We say that a row body bod is compatible with a table body (‘Tq’, row, bod-r) if bod = bod-r. Take two 

rows with the same set of attributes: 

row-1 = [ide-1/dat-11,…,ide-n/dat-1n] 

row-2 = [ide-1/dat-21,…,ide-n/dat-2n] 
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We define a function 

fill-in.(row-2, row-1) = [ide-1/dat-31,…,ide-n/dat-3n] 

where for i = 1;n: 

dat-3i = 
 dat-2i ≠ ϴ ➔ dat-2i 
 dat-2i = ϴ ➔ dat-1i 

This means that each empty value in dor-2 is replace by a default value from dat-1. This function describes 

a rule of adding a new row row-2 to a table whose default row is row-1. 

Create an empty table 

co-create-empty-table : CompositeE ⟼ CompositeE 

co-create-empty-table.com = 
 let 
  bod = bo-create-empty-table.com 
 bod : Error  ➔ row 
 true    ➔ ( (), bod) 

 

An empty table is created from a row composite whose row becomes the row of default values of the table 

and whose body indicates bodies assigned to attributes.  

 

Add a row to a table 

co-add-ro-to-tb : CompositeE x CompositeE ⟼ CompositeE 

co-add-ro-to-tb.(com-r, com-t) = 
com-i : Error      ➔ com-i  for i = r, t 
let 
 (row, bod-r) = com-r 
 (tab, bod-t) = com-t 
 bod = bo-add-ro-to-tb.(bor-r, bod-t) 
bod : Error       ➔ bod 
let 
 (‘Rq’, bod-r)    = bod-r 
 (‘Tq’, row-d, bod-rt) = bod-t                        (rt – row-body of the table) 

 row-fi      = fill-in.(row, row-d) 
new-tab     = tab © (row-fi) 

are-repetitions.new-tab  ➔ ‘redundant-row’ 
let 

new-com-t = (new-tab, bod-t) 
oversized.new-com-t   ➔ ‘overflow’ 

 true         ➔ new-com-t 

  

The body of the added row must be compatible with the body of the table. Additionally, if the value of an 

attribute in the added row is empty, then in this place, we put the value of that attribute in the row of default 

values (which may be empty as well). Of course, the operation of adding a row to a table does not change the 

body of the table.  

The table which is extended by a new row may be empty. In adding a row to a table, we also make sure 

that the new row is not redundant, i.e., equal to a row, which is already in the table.  
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Remove a row from a table 

co-cut-ro-from-tb : Yoke x CompositeE ⟼ CompositeE 

co-cut-ro-from-tb.(yok, com) = 
 com : Error         ➔ com 
 sort.com ≠ ‘Tq’        ➔ ‘table-expected’ 

let 
(tab, (‘Tq’, row-d, bod))  = com 
(row-1,…,row-n)    = tab 

 n = 1            ➔ ‘unique-row-cannot-be-removed’ 
 yok.(row-i, bod) = (tt, (‘boolean’)) ➔ (tab[i/?], bod)  for i = 1;n 
 true             ➔ ‘no-such-row’ 

 

This constructor removes the first row of the table, which satisfies the yoke yok. If there is no such row, an 

error message is generated. In this definition, tab[i/?] denotes the tuple of rows tab after the removal of its i-
th element (see Sec. 2.1.3)131. Note that in this case, we do not refer to any constructor of bodies because 

removing a row, we do not modify the table’s body. 

 

Get a row from a table 

co-get-ro-from-tb : Yoke x CompositeE ⟼ CompositeE 

co-get-ro-from-tb.(yok, com) = 
 com : Error         ➔ com 

let 
(tab, bod-t) = com 
bod-r    = bo-get-ro-from-tb.bod-t 

 bod-r : Error         ➔ bod-r 
 let 

(row-1,…,row-n) = tab 
 yok.(row-i, bod-r) = (tt, (‘boolean’)) ➔ (row-i, bod-r)  for i = 1;n 
 true            ➔ ‘no-such-row’ 

 

First, for every row row-i, we create a row composite (row-i, bod) that consists of that row and the row body 

bod of the table. Next, we select the first of such composites that satisfies the yoke yok. If there is no such 

composite, then an error message is generated. However, if in the course of searching for a row for some index 

i, yok.(row-i, bod) turns out to be an error, then the search continues. Notice also that the constructor bo-get-
ro-from-tb guarantees that bod-r is a row body. The yoke that is used to select the row will be called a selection 

yoke. 

 

Exclude rows from a table 

co-exclude-ro-from-tb : CompositeE x CompositeE ⟼ CompositeE 

co-exclude-ro-from-tb.(com-1, com-2) =  
 com-i : Error   ➔ com-i      for i = 1,2 
 sort.com-i ≠ ‘Tq’ ➔ ‘table-expected’  for i = 1,2 

let 
  (tab-i, bod-i) = com-i  for i = 1,2 

 
131 Users familiar with SQL are aware of the fact that the removal of a row from a table may be either blocked by integrity 

constraints (subordination relation) or lead to a cascade removal of rows from subordinated tables. These mechanisms 
will be described on the level of denotation constructors where we can talk about subordination relations. 
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 bod-1 ≠ bod-2  ➔ ‘bodies-not-compatible’ 
let 

  new-tab = difference.(tab-1, tab-2)                           (see Sec. 2.1.4) 

  new-com = (new-tab, bod-1) 
true      ➔ new-com 

 

This constructor removes all rows from the first table that belong to the second table. The result may be an 

empty table. Here again, we do not use any body-constructor.  

The next constructor generates a table consisted of all rows of a given table that satisfy a given yoke. 

 

Filter rows in a table 

co-filter-ro-in-tb : Yoke x CompositeE ⟼ CompositeE 

co-filter-ro-in-tb.(yok, com) = 
 com : Error    ➔ com 
 sort.com ≠ ‘Tq’   ➔ ‘table-expected’ 

let 
((row-1,…,row-n), (‘Tq’, row, bod-r))  = com 

  fi-tuple-com-row        = filter.yok.((row-1, bod),…,(row-n, bod))   (fi – final) 

fi-tuple-com-row = () ➔ ‘no-row-satisfies-this-condition’ 
let 

((row-fi-1, bod),…,(row-fi-m, bod)) = fi-tuple-com-row 
true       ➔ ((row-fi-1,…,row-fi-m), (‘Tq’, row, bod-r)) 

 

A tuple of row composites created from the table is filtered using a universal operation on tuples filter defined 

in Sec. 2.1.4. Rows appearing in composites of this tuple are used to create the new table. Of course, this 

operation does not change the table’s body.  

 

Join two tables 

co-join-tb  : CompositeE x CompositeE ⟼ CompositeE 

co-join-tb.(com-1, com-2) = 
 com-i : Error    ➔ com-i      for i = 1,2 

let 
  (tab-i, bod-i) = com-i  for i = 1,2 
  bod    = bo-join-tb.(bod-1, bod-2) 

bod : Error     ➔ bod 
let 

new-tab = join-without-repetition.(tab-1, tab-2) 
  new-com = (new-tab, bod) 

oversized.new-com ➔ ‘overflow’ 
true       ➔ new-com  

 

The joining of two tables results in adding to the first table all these rows of the second that do not lead to 

repetitions. The tables that are put together must have identical bodies. The operation on tuples join-without-
repetition is defined in Sec 2.1.4.  

 

Intersect two tables 
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co-intersect-tb : CompositeE x CompositeE ⟼ CompositeE 

co-intersect-tb.(com-1, com-2) =  
 com-i : Error ➔ com-i      for i = 1,2 

let 
  (tab-i, bod-i)  = com-i        for i = 1,2 
  bod    = bo-join-tb.(bod-1, bod-2) 

bod : Error  ➔ bod 
let 

  new-tab = common-part.(tab-1, tab-2)  
  new-com = (new-tab, bod) 

true    ➔ new-com 

 

The resulting table contains only those rows that are common to both tables. The intersected tables must have 

identical bodies, and to check that, we use body constructor bo-join-tb. The operation on tuples common-
part is defined in Sec. 2.1.4.  

10.5.5 Column constructors of table composites  

By a column, we shall mean a non-empty tuple of simple composites. We assume that columns do not contain 

errors, but the domain of columns does. Therefore: 

col : ColumnE = SimComc+ | Error 

Notice that we do not define columns composites, analogously to table composites, but columns as such. They 

are introduced as a technical vehicle to describe five column-oriented operations on tables. 

The first four of these operations are associated with columns only implicitly since none of them neither 

takes a column as an argument nor returns it as a value. The fifth constructor returns columns as values but 

has an auxiliary character, and therefore will have no syntactic counterpart. All of them are defined in three 

steps according to a common rule: 

1. the decomposition of a table composite into a tuple of row composites, 

2. a modification of every row composite by an appropriate constructor of row composites, 

3. the composition of the resulting tuple of row composites into a new table composite (constructors add, 
cut, change) or into a column (constructor get). 

 

Add a column to a table 

co-add-co-to-tb : Identifier x CompositeE x CompositeE ⟼ CompositeE 

co-add-co-to-tb.(ide, com-s, com-t) =                    (s – simple, t – table) 

 com-i : Error     ➔ com-i  for i = s, t 
 sort.com-t ≠ ‘Tq’   ➔ ‘table-expected’ 

let 
(tab, (‘Tq’, row-d, bod-r)) = com-t                    (d – default) 

 (row-1,…,row-n)    = tab 
 com-j        = (row-j, bod-r)         for j = 1;n           (1) 
 com-d        = (row-d, bod-r)                    (2) 
 new-com-j       = co-add-to-ro.(ide, com-s, com-j)  for j = 1;n           (3) 
 new-com-d      = co-add-to-ro.(ide, com-s, com-d)  

new-com-j : Error  ➔ new-com-j  for j = 1;n 
new-com-d : Error   ➔ new-com-d 
let 
 (new-row-j, new-bod-r) = new-com-j   for j = 1;n  
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 (new-row-d, new-bod-r) = new-com-d 
 new-tab   = (new-row-1,…,new-row-n)                             (4) 
 new-com-t  = (new-tab, (‘Tq’, new-row-d, new-bod-r))                     (5) 
oversized.new-com-t  ➔ ‘overflow’ 
true        ➔ new-com-t 

 

This constructor adds a new column to a table by extending all its rows, including the row of default values, 

with the same data taken from the simple composite com-s. This task is done in the following steps: 

1. After two routine checks, we construct a family of row composites {com-j | j=1;n}. Each of these 

composites includes of one row of the table, and (shared) body-row bod-r of the table.  

2. We construct a composite com-d that corresponds to the row of default values row-d. 

3. Each of the constructed composites is extended by a new attribute in using row constructor co-add-
to-row (Sec. 10.5.3). This constructor also checks if com-s is a simple composite and if ide does not 

appear in the set of attributes of the table. Composites constructed in this way have a common row 

body new-bod-r. 

4. new-tab includes all new rows. 

5. The new table composite consists of the new table and the new table body (‘Tq’, new-row-d, new-
bor-r).  

Of course, this algorithm does not need to literally performed by a future implementation of our constructor. 

It only defines its functionality. 

 

Cut a column from a fable 

This constructor is defined analogously to the former, but this time we use the constructor co-cut-from-ro 

(announced but not defined in Sec. 10.5.1), which also checks if ide is an attribute of the table and if it is not 

the unique attribute. Of course, this time, we do not need to check for an overflow. 

 

co-cut-co-from-tb : Identifier x CompositeE ⟼ CompositeE 

co-cut-co-from-tb.(ide, com-t) = 
com-t : Error    ➔ com-t 
sort.com-t ≠ ‘Tq’  ➔ ‘table-expected’ 
let 
(tab, (‘Tq, row-d, bod-r) = com-t 
(‘Rq’, bor)      = bod-r 
(row-1,…,row-n)   = tab 
 com-j      = (row-j, bod-r)        for j = 1;n 
 com-d      = (row-d, bod-r) 
 new-com-j     = co-cut-from-ro.(ide, com-j)   for j = 1;n 
 new-com-d    = co-cut-from-ro.(ide, com-d) 
new-com-j : Error  ➔ new-com-j         for j = 1;n 
new-com-d : Error  ➔ new-com-d 
let 
 (new-row-j, new-bod-r) = new-com-j         for j = 1;n 
 (new-row-d, new-bod-r) = new-com-d 
 new-tab       = (new-row-1,…,new-row-n) 
 new-com      = (new-tab, (‘Tq’, new-row-d, new-bod-r))  
true       ➔ new-com 
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Filter the indicated columns of a table (remove the not-indicated) 

co-filter-co-from-tb : AcPaDe x CompositeE ⟼ CompositeE 

co-filter-co-from-tb.(apd, com) = 
 apd = ()    ➔ ‘choose-an-attribute’ 
 com :Error   ➔ com 
 sort.com ≠ ‘Tq’ ➔ ‘table-expected’ 

let 
  (ide-1,…,ide-n)      = apd 

(tab, (‘Tq’, row, (‘Rq’, bor))) = com 
 bor.ide-i = ?  ➔ ‘no-attribute-ide-i’  for i = 1;n 

let 
  tab-fi  = tab trun {ide-1,…,ide-n} 
  row-fi = row trun {ide-1,…,ide-n} 

bor-fi  = bor trun {ide-1,…,ide-n} 
true     ➔ (tab-fi, (‘Tq’, row-fi, (‘Rq’, bor-fi))) 

 

In this definition, we refer to the domain of actual parameters AcPaDe (Sec. 6.1.3), although now it plays a 

different role. Our constructor removes all columns except those whose attributes are on the list of parameters. 

The operator trun of the truncation of a function has been defined in Sec. 2.1.3. Notice that repetitions in the 

list of parameters do not affect the performance of our constructor.  

 

Change a column in a table conditionally 

co-change-co-in-tb : Identifier x CompositeE x Transfer x Transfer ⟼ CompositeE 

co-change-co-in-tb.(ide, com, tra) = 
 com : Error    ➔ com 
 sort.com ≠ ‘Tq’   ➔ ‘table-expected’ 

let 
(tab, (‘Tq, row, bod) = com 
(row-1,…,row-n)  = tab 

  com-j      = (row-j, bod)            for j = 1;n 
  new-com-j     = co-change-in-ro.(ide, com-j, tra, yok)   for j = 1;n 

new-com-j : Error  ➔ new-com-j             for j = 1;n 
let 

  (new-row-j, bod)  = new-com-j              for j = 1;n 
  new-tab      = (new-row-1,…,new-row-n) 
  new-com     = (new-tab, (‘Tq’, row, bod))  

true       ➔ new-com 

 

This constructor applies co-change-in-ro to each row of the table. This application does not change the table 

body but may generate an error message in the case of non-compatibility of bodies. A particular application 

of this constructor corresponds to the instruction: 

UPDATE Employees  
SET Salary   = Salary * 1,1  
WHERE Position  = ‘salesman’ 

The last constructor of this group selects a column from a table. Although there is probably no such constructor 

in the SQL standard, we introduce it for later use in the definition of yokes for tables. Its denotational coun-

terpart does not belong to the signature of the algebra of denotations, and therefore is not represented at the 

level of syntax either.  
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Get a column from a table 

co-get-co-from-tb : Identifier x CompositeE ⟼ ColumnE 

co-get-co-from-tb.(ide, com-t) = 
com-t : Error     ➔ com-t 
sort.com ≠ ‘Tq’    ➔ ‘table-expected’ 
let 

(tab, (‘Tq’, row-d, bod-r)) = com-t 
(row-1,…,row-n)    = tab 

 com-j        = (row-j, bod-r)        for j = 1;n 
chosen-com-j      = co-get-from-ro.(ide, com-j)   for j = 1;n 
chosen-com-j : Error ➔ new-com-j          for j = 1;n 
true        ➔ (chosen-com-1,…, chosen-com-n) 

 

This constructor creates a tuple of simple composites that correspond to attribute ide in each of table rows 

except the row of default values. Consequently, the resulting column does not contain a default composite. It 

will be referred to in the definition of a yoke (Sec. 10.6.2), which checks the repetition freeness of a column. 

10.5.6 A referential constructor of table composites 

This constructor allows for the composition of two tables into a third one. In typical applications, the source 

tables will be linked by a subordination relation. Still, in the definition of our constructor, we shall not use this 

fact, since subordination graphs will be available only at the level of denotations132. We start from an auxiliary 

constructor that gets three arguments: 

1. a row composite com-r, 

2. a subordination indicator ide, 

3. a table composite com-t, 

and returns a row composite that corresponds to first such a row in com-t that carries on ide the same data as 

is carried on ide by com-r.  

The selected row of table composite com-t will be called a superior row for row composite com-r. Such a 

relation between rows is shown in Fig. 10.3-1. If the row of com-r belongs to a table that is subordinated to 

com-t, then a superior row always exists and is unique. In the opposite case, it may be no such row, or there 

may be more than one.  

 

A table constructor indicating a superior row 

indicate-sup-ro : CompositeE x Identifier x CompositeE ⟼ CompositeE 

indicate-sup-ro.(com-r, ide, com-t) = 
com-i : Error    ➔ com-i       for i = w, t 
sort.com-r ≠ ‘Rq’  ➔ ‘row-expected’ 
sort.com-t  ≠ ‘Tq’  ➔ ‘table-expected’ 
let 
 (row, (‘Rq’, bor-w))      = com-r 
 (tab, (‘Tq’, row-d, (‘Rq’, bor-t))) = com-t 
bor-i.ide = ?    ➔ ‘unknown-attribute’  for i = w, t 

 
132 An alternative to that solution might be a third carrier in the algebra of composites ― the domain of subordination 

graphs. I did not choose such a solution to avoid the modification of the algebra, although, frankly speaking, I am not 
sure which solution is better.  
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let 
 (row-1,…,row-n) = tab 
row-j.ide = row.ide  ➔ (row-j, (‘Rq’, bor-t))  for j = 1;n 
true       ➔ ‘no-such-row’   

 

After all necessary checks, the source-table tab is inspected row-by-row in searching for a row that carries in 

ide the same data as the source row of com-r. The first such row ― if it exists ― becomes the result of the 

computation. Otherwise, an error message is generated.  

Now we are ready to define our target constructor, which gets four arguments: 

1. a table composite com-c that “plays the role of a child table, 

2. a table composite com-p that “plays the role” of a parent table, 

3. an indicator ide shared by both tables, 

4. a row yoke yok  

and creates a table of such rows of com-c that indicate the rows of com-p that satisfy yok. The table created 

by this constructor will be called the derivative table of the two source tables.  

 

The table constructor of derivative tables 

create-der-tb : CompositeE x CompositeE x Identifier x Transfer ⟼ CompositeE 

This constructor is defined by induction on the number of rows of child table. We start, therefore, from a table 

with one row only. For that case we define a separate constructor: 

 

create-der-tb-1w.(com-c, com-p, ide, yok) =  
 com-i Error         ➔ com-i  for i = c, p 
 sort.com-i ≠ ‘Tq’       ➔ ‘table-expected’ 
 let 
  ((row), (‘Tq’, row-d, bod-r)) = com-c 
  com-r        = (row, bod-r)              composite created from a row 

  com-rs        = indicate-sup-ro.(com-r, ide, com-p) 
 com-rs : Error        ➔ com-rs 

yok.com-rs = (tt, (‘boolean’)   ➔ com-c 
yok.com-rs : Error       ➔ yok.com-rs 
true            ➔ ((), (‘Tq’, row-d, bod-r)) 

 

The earlier defined constructor indicate-sup-ro indicates composite com-rs that carries a row superior for 

the unique row com-r of the table com-c. It the superior row com-rs satisfies the yoke yok then the current 

table com-c becomes the result of the constructor. Otherwise: 

• if the application of yok leads to an error then this error becomes the result, 

• otherwise, i.e., if yok generates (ff, (‘boolean’)), then the result is an empty table with the body iden-

tical to the body of com-c.  

The second inductive step is the following: 

  

create-der-tb.(com-c, com-p, ide, yok) =  
com-i Error    ➔ com-i  for i = p, n 
sort.com-i ≠ ‘Tq’  ➔ ‘table-expected’ 
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 let 
  (tab, bod-r) = com-c 
 tab = ()      ➔ ‘empty-subordinated-table’ 
 let 
  ((row-1,…,row-k), bod-r)) = com-c 
  com-c-1       = ((row-1), bod-r)) 
  com-rs -1       = create-der-tb-1w.(com-c-1, ide, com-p) 
 com-rs -1 : Error  ➔ com-rs-1 
 k = 1       ➔ com-rs-1 
 let 
  com-res  = ((row-2,…,row-k), bod-r)      (res – residuum) 
  com-rs -res = create-der-tb.(com-res, ide, com-p) 
 com-rs -res : Error ➔ com-rs-res 
 true       ➔ co-join-tb.(com-rs-1, com-rs-ind) 

 

After all necessary checks, the resulting table com-rs-1 is created for the table com-c-1 that results from 

com-c by reducing it to only one row.  

If the table com-c has only one row, then the computation terminates. In the opposite case, we recursively 

apply our constructor to the residuum of the table com-c, and the resulting table is “glued” using join-tb to 

the table resulting from the first row.  

Notice that this constructor is defined for an arbitrary pair of source tables, i.e., not necessarily for tables 

linked by a subordination relation.  

10.6 Yokes  

Types ― as understood in this book ― are mentioned in SQL manuals only in the context of simple data and 

even in that case in a very unclear and incomplete way. Types of tables are implicit in table declarations, and 

types of rows, columns, and databases are absent. In table declarations, descriptions of bodies are mixed with 

the descriptions of yokes, and with database instructions, and are called integrity constraints (Sec. 9.3). 

Unfortunately, in none of the manuals listed in Sec. 9, I have found a complete description of integrity 

constraints. Although all of them have a non-empty common part, besides that part, each manual offers dif-

ferent ideas. In this situation, I decided to construct such a model of SQL types that would cover a “sufficiently 

large” spectrum of types appearing in SQL manuals. 

Since in Lingua-SQL, there are no database composites, there will be no database yokes either. The prop-

erties of databases will be described by: 

• yokes that describe their tables, 

• subordination graphs “visible” at the level of denotations. 

We assume that in Lingua-SQL, we have earlier defined transfer constructors and yoke constructors. New 

constructors will generate transfers on new simple data, that we may regard as the parameters of our model, 

plus row- and table-transfers that are defined below. 

10.6.1 A row transfer 

In this group we have only one constructor which is analogous to the selection constructor for records: 

Tc[co-get-from-ro] : Identifier ⟼ Transfer 

Tc[co-get-from-ro].ide.com = co-get-from-ro.(ide, com) 

The transfer constructed in this way selects a data and its body (a composite) assigned to an identifier in a 

row. For such a transfer not to generate an error, com must be a row composite.  
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The remaining constructors, including boolean constructors, may be used to create row transfers and yokes in 

the same way as for records.  

10.6.2 Table yokes 

Table yokes are split into two classes. The first contains quantified table-yokes, which describe table properties 

by row yokes that should be satisfied by all rows of a table. The second class contains column yokes.  

In the first case, we have a situation analogous to the creation of a list yoke using all-of-li. The name of this 

constructor does not have the form Tc[dco] since it does not refer to any data constructor.  

Quantified table-yoke 

all-in-tb : Yoke ⟼ Yoke 

all-in-tb.yok.com = 
 com : Error          ➔ com 
 sort.com ≠ ‘Tq’         ➔ ‘table-expected’ 

let 
  ((row-1,…,row-n), (‘Tq’, row-d, bod)) = com 
  com-i            = (row-i, bod)  for i = 1;n 

yok.com-i : Error        ➔ yok.com-i    for i = 1;n 
sort.(yok.com-i) ≠ (‘boolean’)    ➔ ‘yoke-expected’ 

(∀ com-i) yok.com-i = (tt, (‘boolean’)) ➔ (tt, (‘boolean’)) 
true             ➔ (ff, (‘boolean’)) 

Notice that yok does not need to be satisfied by the row of default values row-d. This decision is due to the 

fact that some fields of row-d may be empty. 

Although quantified table-yokes express properties of table rows explicitly, they express implicitly ― due 

to quantifiers ― some properties of columns. These properties may also be expressed by yokes satisfied by 

all the elements of a column. This technique does not allow, however, to express properties of columns re-

garded as a whole, e.g., that the column is ordered or that it does not contain repetitions. To express such 

properties, we need special column-dedicated constructors. Here is one example of such a constructor: 

no-repetitions-tb : Identifier ⟼ Yoke 

no-repetitions-tb.ide.com = 
 com : Error   ➔ com 
 sort.com ≠ ‘Tq’  ➔ ‘table-expected’ 

let 
  col = co-get-co-from-tb.(ide, com)                     (see Sec. 10.5.5) 

col : Error    ➔ col 
true      ➔ (no-repetitions.col, (‘boolean’)) 

We create a tuple of composites col, which represents the column of the attribute ide, and then we check if 

this tuple satisfies the universal predicate no-repetitions (Sec. 2.1.4). It is to be recalled that the created col-

umn does not contain an element from the row of default values. 

Since we have boolean constructors among constructors of yokes (Sec. 4.3.4), we can use them to construct 

yokes that express properties of several columns of a table and all of its rows. Notice that contrary to the SQL 

standard, the properties of columns and rows may be combined by arbitrary boolean constructor rather than 

by conjunction only133. 

In the end, it should be pointed out that subordination relations do not appear at the level of table yokes 

since the subordination of one table to another one is not a property of tables but of databases. Consequently, 

as we are going to see in Sec. 10.11, a SQL-like declaration of a table variable will correspond in our case to 

 
133 To say the truth I am not sure if such a generalisation has a practical value. 



Andrzej Blikle (in cooperation with Piotr Chrząstowski-Wachtel), A Denotational Engineering of Programming Languages     255 

 

a colloquial declaration “unfolding” in the concrete syntax to a sequence of a table-variable declaration and a 

database instruction.  

10.7 Types 

The algebra of types of Lingua-SQL contains six carriers: 

Identifier 
CompositeE 
BodyE 
Transfer 
Yoke 
TypeE 

and results from the algebra of types of Lingua-A by extending it by a new carrier CompositeE, and by four 

groups of constructors: 

1. all row-composite constructors of Sec. 10.5.3; we need them to build table types which include rows 

of default bodies, 

2. all transfer and yoke constructors described in Sec. 10.6, 

3. two constructors of row bodies (defined in Sec. 10.4),  

4. one constructor of table bodies (defined in Sec. 10.4) 

5. one type constructor described below. 

New body constructors for rows and tables that we shall need in constructing types are the following. 

bo-create-ro     : Identifier x BodyE    ⟼ BodyE 

bo-add-to-ro     : Identifier x BodyE x BodyE ⟼ BodyE 

bo-create-empty-table  : CompositeE      ⟼ BodyE 

Similarly as in Sec. 4.3.5, we define only one type constructor: 

create-ty : BodyE x Yoke ⟼ TypeE 

create-ty.(bod, yok) = 
 bod : Error  ➔ bod 
 true    ➔ (bod, yok) 

For explanations and comments see Sec. 4.3.5.  

10.8 Values 

10.8.1 Simple values, row values, and table values 

So far, values in Lingua consisted of a composite and a yoke. This principle is kept in Lingua-SQL for values 

carrying simple data, rows, and tables. Still, in the case of databases, values are going to be records of tables 

supplemented by graphs of subordination relations (Sec. 0). 

Simple values, row values, and table values in Lingua-SQL are understood in the same way as in the 

previous versions of Lingua, i.e., as pairs consisting of a data, and a type or — equivalently — of a composite 

and a yoke, where composite satisfies yoke. 

In Lingua-SQL, we include all values and all value constructors of Lingua-2 plus the constructors of 

values specific for SQL. 

First constructor builds empty and yokeless values out of simple bodies: 
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va-empty: BodyE ⟼ ValueE 

va-empty.bod =  
 bod : Error     ➔ bod 
 not bod : SimpleBod ➔ ‘simple-body-expected’ 

true       ➔ (Ø, (bod, TT)) 

 

The remaining constructors have the following signatures: 

  

Constructors of row values 

va-create-ro      : Identifier x ValueE     ⟼ ValueE 

va-add-to-ro     : Identifier x ValueE x ValueE  ⟼ ValueE 

va-cut-from-ro     : Identifier x ValueE      ⟼ ValueE 

va-get-from-ro  : Identifier x ValueE      ⟼ ValueE 

va-change-in-ro  : Identifier x ValueE x Yoke  ⟼ ValueE 

 

Row constructors of table values 

va-create-empty-table : ValueE       ⟼ ValueE 

va-add-ro-to-tb    : ValueE  x ValueE  ⟼ ValueE 

va-cut-ro-from-tb   : Yoke x ValueE   ⟼ ValueE 

va-get-ro-from-tb    : Yoke x ValueE   ⟼ ValueE 

va-exclude-ro-from-tb : ValueE x ValueE   ⟼ ValueE 

va-filter-ro-in-tb    : Yoke x ValueE   ⟼ ValueE 

va-join-tb      : ValueE x ValueE   ⟼ ValueE 

va-intersect-tb    : ValueE x ValueE   ⟼ ValueE 

 

Column constructors of table values 

va-add-co-to-tb   : ValueE x ValueE x ValueE   ⟼ ValueE 

va-cut-co-from-tb  : ValueE x ValueE       ⟼ ValueE 

va-filter-co-from-tb  : AcPaDe x ValueE      ⟼ ValueE 

va-change-co-in-tb : ValueE x ValueE x Yoke x Yoke ⟼ ValueE  

 

Since all these constructors should be made transparent for errors, their definitions should be written according 

to the following scheme already known from Sec. 4.3.6: 

1. checking if arguments are not errors, 

2. performing the corresponding composite constructor on composite parts of values, 

3. building a yoke of the resulting value, 

4. checking if the resulting composite satisfies the resulting yoke.  
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The only creative part of that task involving engineering decisions is associated with defining resulting yokes 

(point 3.). We omit this issue to avoid going too deep into SQL mechanisms.  

10.8.2 Database values 

Database values are constructed in a way different from the constructors of other values. Intuitively a database 

consists of a record of tables, i.e., a mapping from identifiers to tables, plus a subordination relation between 

these tables. We shall assume that every state can carry several databases, but only one may be active at a 

time, i.e., it may be accessible to database operations.  

To describe such a mechanism, two new notions are necessary. In the first place, we introduce the domain 

of table values: 

val: TabVal = {(com, yok) | sort.com = ‘Tq’ and yok.com = (tt, (‘boolean’))} 

Of course, this domain is a subset of domain Value, and therefore its elements are built by constructors defined 

in Sec. 10.8.1. By a database record we shall mean a mapping that maps identifiers into table values: 

dbr : DatBasRec = Identifier ⟹ TabVal 

Of course, database records are not records in the sense of Sec. 4.3.1 but only in a set-theoretic sense. 

We say that a database record dbr satisfies the subordination relation described by a subordination graph 

sgr, in symbols  

dbr satisfies sgr, 

if for every edge  (ide-c, ide, ide-p) of this graph, the tables assigned to ide-c and ide-p are defined, and if 

(com-c, yok-c) = dbr.ide-c 

(com-p, yok-p) = dbr.ide-p 

then the subordination relation holds, i.e. 

com-c sub[ide] com-p 

By a database value we mean a pair consisting of a database record and a subordination graph that describes 

the subordination relations satisfied by that record: 

dbv : DbaVal = {(dbr, sgr) | dbr satisfies sgr} 

Intuitively we may say that in database values, the role of a yoke is played by the predicate satisfies. Notice, 

however, that since a database record caries table values, the tables of a database satisfy yokes assigned to 

them. 

Constructors of database values will be described at the level of instructions in Sec. 10.9.6. 

10.9 The algebra of denotations 

As was already announced, Lingua-SQL will offer all programming mechanisms of Lingua-2, and addition-

ally, some constructors corresponding to selected tools of SQL. In the present section, these new constructors 

are briefly described. Many technical details are omitted for the sake of simplicity.  

10.9.1 States and denotational domains 

The concept of a state in Lingua-SQL is analogous as before with the only difference that now the domain of 

values includes new sorts: 

1. simple SQL values, 

2. row values, 

3. table values, 
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4. database values. 

In every state, several database values may be stored, i.e., assigned to identifiers, but only one database may 

be active at a time. A database is said to be active in a state if its tables are assigned to identifiers in the 

valuation of that state. We assume further that every state carries four system identifiers: 

sb-graph ― that binds the subordination graph of the active base in the environment, 

copies  ― that binds a finite set of table names (identifiers) in the valuation, 

monitor  ― that binds one table in the valuations; this table is displayed on a monitor, 

check  ― that binds words ‘yes’ or ‘no’ in valuations. 

Their role will be explained later. So far, we only assume that these identifiers cannot be used as identifiers of 

variables, of type constants, and of procedures. The identifier check is called the security flag. If its value is 

‘yes’, then we say that the flag is up. Otherwise, the flag is down.  

The signature of the algebra of denotations of Lingua-SQL is an extension of the signature of Lingua-2 

by new constructors. There are no new carriers, but the old carriers are getting new elements.  

10.9.2 Data-expression denotations 

Following the rule described in Sec. 4.4.2 constructors of data-expression denotations of Lingua-SQL split 

into four categories: 

1. one constructor of variables, 

2. constructors derived from non-boolean value constructors; for each such constructor vco, we define a 

constructor of denotations Cdd.[vco] (Cdd stands for constructor of data-expression denotations),  

3. boolean constructors, 

4. one constructor that corresponds to conditional expressions. 

Constructors of groups 1., 3., and 4. plus these constructors of group 2. that correspond to non-SQL value 

constructors remain the same as in Lingua-2. Therefore, all we have to define are constructors derived from 

SQL-value constructors except database constructors, that will appear at the level of instructions.  

Specific SQL constructors of expression denotations will be derived from specific SQL constructors of 

values in a way similar — but not quite analogous — to that described in Sec. 4.4.2., i.e., according to the 

scheme (4.4.2-1). The “not quite analogous” means that in table expressions which take table values as argu-

ments, tables must be represented by identifiers, rather than by expressions. For instance, with the constructor 

of table values: 

va-add-ro-to-tb : ValueE x ValueE ⟼ ValueE 

we associate the following constructor of data-expression denotations: 

Cdd[va-add-ro-to-tb] : DatExpDen x Identifier  ⟼ DatExpDen 

Cdd[va-add-ro-to-tb].(ded, ide).sta =  
 va-add-ro-to-tb.(ded.sta, dat-variable.ide.sta) 

where the source row is ded.sta, and the source table is dat-variable.ide.sta. This decision is of engineering 

character and is assumed to simplify syntax analysis. It also seems conformant with SQL standards. 

Since the definitions of all these constructors correspond to the scheme (4.4.2-1), we shall not repeat them 

here. We only show signatures of constructors, which we shall need to generate the syntax of Lingua-SQL. 

 

The constructor of empty-value expression denotations 

Cdd[va-empty.bod] : BodExpDen ⟼ DatExpDen 
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Constructors of row-expression denotations  

Cdd[va-create-ro]      : Identifier x DatExpDen       ⟼ DatExpDen 

Cdd[va-add-to-ro]     : Identifier x DatExpDen x DatExpDen ⟼ DatExpDen 

Cdd[va-cut-from-ro]     : Identifier x DatExpDen       ⟼ DatExpDen 

Cdd[va-get-from-ro]  : Identifier x DatExpDen       ⟼ DatExpDen 

Cdd[va-change-in-ro]  : Identifier x DatExpDen x Transfer   ⟼ DatExpDen 

 

Row constructors of table-expression denotations 

Cdd[va-create-empty-table] : DatExpDen x Transfer     ⟼ DatExpDen 

Cdd[va-add-ro-to-tb]    : DatExpDen  x Identifier    ⟼ DatExpDen 

Cdd[va-cut-ro-from-tb]   : Transfer x Identifier      ⟼ DatExpDen 

Cdd[va-get-ro-from-tb]    : Transfer x Identifier      ⟼ DatExpDen 

Cdd[va-exclude-ro-from-tb] : Identifier x Identifier      ⟼ DatExpDen 

Cdd[va-filter-ro-in-tb]    : Transfer x Identifier      ⟼ DatExpDen 

Cdd[va-join-tb]      : Identifier x Identifier      ⟼ DatExpDen 

Cdd[va-intersect-tb]    : Identifier x Identifier      ⟼ DatExpDen 

 

Column constructors of table-expression denotations 

Cdd[va-add-co-to-tb]   : Identifier x DatExpDen x Identifier    ⟼ DatExpDen 

Cdd[va-cut-co-from-tb]  : Identifier x Identifier          ⟼ DatExpDen 

Cdd[va-filter-co-from-tb]  : AcPaDe x Identifier          ⟼ DatExpDen 

Cdd[va-change-co-in-tb]  : Identifier x Identifier x Transfer x Transfer  ⟼ DatExpDen 

 

The constructor of the denotation of an expression that creates a derivative table 

Cdd[va-create-der-tb] : Identifier x Identifier x Identifier x Transfer ⟼  DatExpDen 

10.9.3 Type-expression denotations 

Similarly as in Lingua-2 (Sec.4.4.2) the algebra of type-expression denotations of Lingua-SQL contains five 

carriers: 

ide : Identifier   = …  

bed : BodExpDen  = State ⟼ BodyE             body-expression denotations 

tra  : TraExpDen  = Transfer                transfer-expression denotations 

yok : YokExpDen  = Yoke                  yoke-expression denotations 

ted : TypExpDen  = State ⟼ TypeE             type-expression denotations 

According to the rules described in Sec.4.4.2, the denotations of transfer- and yoke-expressions are simply 

transfers and yokes. It is so because transfers and yokes are not saved in states. To the constructors of Lingua-

2 we add: 

1. constructors of SQL transfers and yokes defined in Sec. 10.6, 
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2. selected row constructors of SQL data-expression denotations (Sec. 10.9.2); they are needed to 

creates rows of default values, 

3. constructors of specific SQL type-expression denotations derived from SQL type-constructors 

(Sec. 10.7). 

These assumptions lead to the following list of new constructors in the algebra of denotations of Lingua-SQL.  

The constructors of denotations of transfer- and yoke expressions 

Tc[co-get-from-ro] : Identifier  ⟼ TraExpDen 

all-in-tb     : YokExpDen ⟼ YokExpDen 

no-repetitions-tb :     ⟼ YokExpDen 

The constructors of denotations of body expressions 

I recall that Cbd is a meta-constructor which transforms body-constructors into constructors of the denotations 

of body expressions. 

Cbd[bo-create-ro]     : BodExpDen x Identifier      ⟼ BodExpDen 

Cbd[bo-add-to-ro]     : BodExpDen x Identifier x BodExpDen ⟼ BodExpDen 

Cbd[bo-create-empty-table] : DatExpDen           ⟼ BodExpDen 

10.9.4 Denotations of type-constant declarations 

New declarations of type constants in Lingua-SQL are the declarations that refer to new type constructors 

(Sec. 10.7) and to new type of declarations related to the modifications of subordination graphs. 

Since the declarations of the first group coincide with the general scheme described in Sec. 5.1.4.2, we 

shall not repeat them here.  

The constructors related to the subordination graphs do not belong to that group since they do not create 

any type constant but only change the subordination graph assigned to the system identifier sb-graph. These 

constructors will appear only on the level of database instructions in Sec. 10.9.6.11.  

The only constructor related to subordination graphs is therefore the following: 

add-sub-type : Identifier x Identifier x Identifier ⟼ TypDecDen 

add-sub-type.(ide-c, ide, ide-p).sta = 

 is-error.sta     ➔ sta 

 ide-c = ide-p     ➔ sta ◄ ‘reflexivity-not-allowed” 

 let 

  ((tye, pre), skł) = sta 

  sgr = tye.sb-graph 

 (ide-c, ide, ide-p) : sgr ➔ ‘redundant-subordination’ 

 let 

  new-sgr = sgr | {(ide-c, ide, ide-p)} 

 true        ➔ ((tye[sb-graph/new-sgr], pre), sto) 

This constructor builds a denotation that extends the subordination graph and updates the type environment. 

At the stage of type declarations I do not introduce the constructor of removing edges from a graph since this 

is an operation from the level of database instructions. It will appear, therefore in Sec. 10.9.6.11. 
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10.9.5 Denotations of data-variable declarations 

Variables in Lingua-SQL may be bound to all values of Lingua-2 and additionally to four groups of specific 

SQL-values: 

1. simple SQL-values, 

2. row values, 

3. table values, 

4. database values. 

The declarations of variables of first two groups coincide with the general scheme of such declarations in 

Lingua-2 (Sec. 5.1.2). In Lingua-SQL there are no declarations of database variables, but instead, we have a 

specific instruction of database archivation by assigning it to an indicated identifier (Sec. 10.9.6.11). The 

constructor of table-variable declarations is defined in a way slightly different than in Lingua-2: 

 

declare-tab-var : Identifier x TypExpDen ⟼ VarDecDen 

declare-tab-var.(ide, ted).sta = 

is-error.sta    sta 

declared.ide.sta   sta ◄ ‘variable-declared’ 

let 

typ = ted.sta 

typ : Error     sta  typ 

let 

 (bod, yok) = typ 

sort.bod ≠ ‘Tq’  ➔ sta ◄ ‘table-type-expected’ 

let 

 val      = ((), typ) 

(env, (vat, ‘OK’))  = sta 

true       (env, (vat[ide/val], ‘OK’)) 

 

The difference of this declaration from the standard of Sec. 5.1.2 consists in the fact that in the present case, 

a variable is bound to an empty table ((), typ), rather than to a pseudo value (Ω, typ). And, of course, we also 

check if typ is a table type. 

10.9.6 Instructions 

10.9.6.1 Categories of SQL instructions  

The carrier of instruction denotations in the algebra of denotations of Lingua-SQL is enriched with new 

constructors of specific SQL instructions of three categories; 

1. row assignments, 

2. table assignments, 

3. database instructions. 

All constructors of Lingua-2 are still available and applicable to the extended carrier of instruction denota-

tions. This rule concerns, in particular, the constructor of yoke replacement and the constructors of structured 
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instruction, i.e., sequential composition, branching, and loop. The constructors of procedure declaration and 

procedure call remain unchanged as well, although now they are defined on extended domains.  

A particular role in SQL is played by a large group of table assignments where we distinguish two catego-

ries: 

1. table-modification instruction where on both sides of the assignment, we have the name of the same 

table, 

2. table-creation instruction where on the left-hand side of the instruction we may have a different table 

name (the name of the table that is being created) than on the right-hand side. 

From a mathematical perspective, the first category may be regarded as a particular case of the second. Still, 

denotationally they correspond to two different constructors of the algebra of denotations hence also to differ-

ent constructors of the algebra of syntax. The reason for using two different constructors will be explained 

later. 

Independently of the categorization described above, table assignments are split into two further categories 

according to two ways of using subordination constraints (cf. Sec. 9.5):  

1. conformist instructions where an execution terminates with an error message whenever it would lead 

to a violation of subordination constraints; this category corresponds to the option RESTRICT, 

2. correcting instructions which in the described situation introduce such changes to a hosting database 

that guarantee the protection of subordination constraints; this category corresponds to the option CAS-

CADE. 

If I understood it correctly from the manuals quoted at the beginning of Sec. 9.1, the first option is (most 

frequently?) the default option whereas the second has to be declared explicitly and is available only for a 

group of chosen instructions, e.g., when a row is removed from a table.  

10.9.6.2 Row instructions  

Row instructions create and modify row values assigned to identifiers in states. We build them using the 

assignment constructor defined in Sec. 5.1.2 and the constructor of data expressions denotations that return 

row values described in Sec. 10.9.2. 

10.9.6.3 Two universal constructors of table assignment 

In Lingua-SQL, we have two assignment constructors that correspond respectively to assigning a table to a 

table-variable and to assigning a table to the system-identifier monitor.  

In the first case, we could use the general constructor defined in Sec. 5.1.2 unless the assignment modifies 

an existing table in a way that violates the subordination relation. To cope with the latter case, we have to 

introduce a database-oriented constructor of assignments. As we are going to see, it will become a convenient 

tool for the definitions of many other table assignments. Since, however, there is no such constructor in the 

SQL standard, the issue of making it available at the level of the syntax of Lingua-SQL I leave open so far.  

The second universal constructor of table assignments will be used in the definitions of query denotations.  

To define the first constructor, we introduce two auxiliary functions called violation-control functions. The 

first of them checks if a given identifier points in the current state to a table that violates one of the declared 

subordination relations.  

 

violated-sr : Identifier x State ⟼ {tt, ff} | Error 

violated-sr.(ide, sta) = 

 is-error.sta    ➔ error.sta 

 let 

  ((tye, pre), (vat, ‘OK’))  = sta 
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  sgr = tye.sb-graph 

 vat.ide = ?     ➔ ‘no-such-table’ 

 sort.(vat.ide) ≠ ‘Tq’ ➔ ‘table-expected’ 

 (∃ (ide-c, ide-id, ide-p) : sgr)  

  [vat.ide-i = ! and sort.(vat.ide-i) = ‘Tq’] for i = p, n and 

  ( (ide = ide-c and not vat.ide sub[ide-id] vat.ide-c) or 

  (ide = ide-p and not vat.ide-c sub[ide-id] vat.ide) ) 

         ➔ tt 

 true       ➔ ff 

 

This function returns tt if the table vat.ide does not satisfy the subordination-condition indicated by the edge 

(ide, ide-id, ide-p) or by (ide-c, ide-id, ide). 

The second function is similar to the first one and is used to check if a given composite satisfies a given 

table yoke. Notice that the checking may be deactivated by setting the flag check to ‘not’. In this case, we 

implement the mechanism of a temporary deactivation of integrity constraints described by yokes. I wish to 

emphasize that I have not introduced such an option for integrity constraints described by subordination rela-

tion134.  

 

violated-yo : Composite x Yoke x State ⟼ {tt, ff} | Error  

violated-yo.(com, yok, sta) = 

 is-error.sta      ➔ error.sta 

let 

  (env, (vat, ‘OK’)) = sta 

 vat.check = ‘not’    ➔ ff           (check is a system identifier; Sec. 10.2) 

yok.com = (tt, (‘boolean’) ➔ ff 

 true         ➔ tt 

 

As we see, checking if a yoke has been violated is performed only if the flag is up (set into ‘yes’). In fact, this 

is the only role played by the state argument of this yoke constructor. Notice also that this function returns tt 
(signalizes the violation of the yoke) also, if the checking result tra.com is an error. Now we are ready to 

define the assignment constructor for tables.  

 

 assign-tb : Identifier x DatExpDen ⟼ InsDen 

 assign-tb.(ide, ded).sta = 

is-error.sta           ➔ sta 

vat.ide = ?            ➔ sta ◄ ‘undeclared-identifier’ 

ded.sta = ?           ➔ ? 

 
134 I assume that if the violation of the subordination relation is in danger, e.g. between the deletion of one column and 

the insertion of another, then the programmer should introduce two instructions into the program that modify the rela-
tion accordingly.  
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ded.sta : Error          ➔ sta ◄ ded.sta 

let 

((tye, pre), (vat, ‘OK’)) = sta 

(dat-n, bod-n, yok-n)  = ded.sta                   (n – new) 

(dat-f, bod-f, yok-f)   = vat.ide                 (f– former) 

sort.bod-n ≠ ‘Tq’         ➔ sta ◄ ‘table-expected’  

sort.bod-f ≠ ‘Tq’          ➔ sta ◄ ‘table-expected’  

not bod-n coherent bod-f      ➔ sta ◄ ‘no-coherence’ 

let 

 sta-n = (env, (vat[ide/(dat-n, bod-n, yok-n)], ‘OK’)) 

violated-yo.((dat-n, bod-n), yok-f, sta-n) ➔ sta ◄ ‘table-yoke-violated’ 

violated-sr.(com-n, sta-n)      ➔ sta ◄ ‘subordination-relation-violated’ 

        true              ➔ sta-n 

 

As a result of the execution of such an assignment, the identifier ide is bound to a new value ((dat-n, bod-n), 
yok-f) under the condition that: 

1. both mon-f and com-n are table composites and are mutually coherent, 

2. new composite satisfies in the new state the inherited (former) yoke yok-f unless the check-flag is set 

to ‘not’, 

3. new composite does not violate in the new state the current subordination relation. 

Notice that the violation of a subordination relation may only happen if the assignment modifies an existing 

table. 

The second specific assignment constructor corresponds to the situation when a table which is defined by 

a table expression is assigned to the system identifier monitor, which physically means that it is displayed on 

a monitor. In that case, the new table is not restricted by any yoke, which is expressed by the fact that its yoke 

is TT.  

 

assign-mo : DatExpDen ⟼ InsDen 

assign-mo.ded.sta = 

 is-error.sta  ➔ sta 

 let 

  (env, (vat, ‘OK’))  = sta 

val       = ded.sta 

 val : Error   ➔ sta ◄ com 

 sort.val ≠ ‘Tq’ ➔ ‘table-expected’ 

 let 

  (com, yok) = val 

 true     ➔ (env, (vat[monitor/(com, TT)], ‘OK’) 
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As we see, in this case, we do not expect the identifier monitor to be declared. As a system identifier, it is 

always available and may be bound to an arbitrary table value. If, at the time of the execution of the described 

assignment, some value is already assigned to the monitor, then it is overwritten by the new value. 

10.9.6.4 Transactions 

Transactions, similarly to instructions, are state transformations, but contrary to the former, they are total 

functions since they do not contain loops and procedure calls. Moreover, they do not create new tables but 

only modify the existing ones. Their domain is, therefore, the following: 

trd : TrnDen = State ⟼ State 

Transactions are regarded as a separate carrier of our algebra to avoid the use of arbitrary table instructions in 

the contexts of transactions. 

The largest group of transactions are table modifications which in a traditional syntax could have the form: 

ide := table-expression(ide) 

where on both sides, we have the same table named ide. The denotations of such assignments are created as 

combinations of a table assignment (Sec. 10.9.6.3) and some denotation of a table expression or a transfer 

expression. Below there is a list of such transactions that are related to data expressions described in Sec. 

10.9.2. First one corresponds to adding a row to a table: 

add-ro : Identifier x DatExpDen ⟼ TrnDen 

add-ro.(ide, ded-r) =  

 assign-tb.( ide, Cdd[va-add-ro-to-tb].(dat-variable.ide, ded-r) ) 

The execution of this constructor creates a transaction-denotation, which to the table carried by the identifier 

ide adds a row generated by the denotation ded-r. Let us read that definition in details: 

The table assignment constructor assign-tb receives as its first argument the identifier of the table that is 

being modified and as the second ― the expression denotation generated by the constructor Cdd[va-add-ro-
to-tb]. The arguments of the latter are two expression denotations: 

• the denotation of the variable dat-variable.ide, which identifies the modified table, 

• the denotation of a row expression ded-r, which generates the row which is to be added to the table. 

In an analogous way we may define constructors related to table-modifications:  

 

cut-ro : Identifier x Transfer ⟼ TrnDen 

cut-ro.(ide, tra) =  

 assign-tb.(ide, Cdd[va-cut-ro-from-tb].(tra, dat-variable.ide)) 

 

exclude-ro : Identifier x Identifier ⟼ TrnDen 

exclude-ro.(ide-1, ide-2) = 

 assign-tb.(ide-1, Cdd[va-exclude-ro-from-tb].(dat-variable.ide-1, dat-variable.ide-2)) 

 

add-co : Identifier x DatExpDen x Identifier  ⟼ TrnDen 

add-co.(ide-c, ded, ide-t) =                    (c - column, t – table) 

 assign-tb.(ide-t, Cdd[va-add-co-to-tb].(ide-c, ded, dat-variable.ide-t)) 
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cut-co : Identifier x Identifier ⟼ TrnDen 

cut-co.(ide-c, ide-t) = 

 assign-tb.(ide-t, Cdd[va-cut-co-from-tb].(ide-c, dat-variable.ide-t)) 

 

filter-co : AcPaDe x Identifier ⟼ TrnDen 

filter-co.(apd, ide) = 

 assign-tb.(ide, Cdd[va-filter-co-from-tb].(apd, dat-variable.ide)) 

 

change-co : Identifier x Identifier x Transfer ⟼ TrnDen 

change-co.(ide-c, ide-t, tra) = 

 assign-tb.(ide-t, Cdd[va-change-co-in-tb].(ide-c, dat-variable.ide-t, tra) 

 

The second group of transactions consist of protection commands used to protect a table against destruction. 

 

Create a security copy 

create-security-copy: Identifier ⟼ State ⟼ State 

create-security-copy.sta = 

is-error.sta ➔ sta 

 let 

  (env, (vat, ‘OK’)) = sta 

  base     = vat trun {ide | vat.ide : TabVal} 

  sgr     = tye.sb-graph 

  copy-register  = vat.copies | {ide} 

 vat.ide = !  ➔ ‘variable-declared’ 

  true    ➔ (env, (vat[ide/(base, sgr), copies/copy-register], ‘OK’)) 

 

This function creates a database that consists of: 

• all table values that appear in the current valuation,  

• and of the current subordination graph,  

and assigns this database to the identifier ide. This identifier is added to the register of copies assigned to the 

system identifier copies.  

I recall that trun denotes the truncation of a function to a subset of its domain (Sec. 2.1.3).  

 

Remove the security copy 

remove-security-copy : Identifier ⟼ TrnDen 

remove-security-copy.ide.sta =  

 is-error.sta    ➔ sta 

 let 
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  (env, (vat, ‘OK’)) = sta 

  copy-register  = vat.copies – {ide}  

 vat.ide = ?     ➔ ‘unknown-identifier’ 

 not vat.ide : DbaVal ➔ ‘database-expected’  

 true      ➔ (env, (vat[ide/?, copies/copy-register], ‘OK’)) 

 

The copy of the base is removed from the valuation, and its name is removed from the copy register. 

 

Recover the security copy 

recover-security-copy : Identifier ⟼ TrnDen 

recover-security-copy.ide.sta = 

 is-error.sta    ➔ sta 

 let 

  (env, (vat, ‘OK’)) = sta 

 vat.ide = ?     ➔ ‘unknown-identifier’ 

 not vat.ide : DbaVal ➔ ‘database-expected’  

 let 

  (dbr, sgr)   = vat.ide 

  copy-register = vat.copies – {ide}  

true      ➔ (env, (vat[ide/?, copies/copy-register] ⧫ dbr, ‘OK’)) 

 

The database dbr carried by the identifier ide is a mapping that assigns database values to identifiers. This 

mapping overwrites the current valuation from which we have removed the base carried by ide. The name of 

the removed copy is also removed from the copy register.  

 

Recover the security-copy conditionally 

recover-security-copy-if : DatExpDen x Identifier ⟼ TrnDen 

recover-security-copy-if.(ded, ide) = if-error.(ded, ‘recover-security-copy’.ide) 

 

If ded generates an error, then the recovery procedure is executed. In this case, we use the constructor is-error 
(Sec. 5.1.5.4). This use is not entirely formal since the second argument of is-error should be an instruction 

denotation, whereas in our case, this is a transaction denotation. However, since set-theoretically transaction 

denotations belong to the domain of instruction denotations, our definition makes sense.  

The following two constructors are used to set the flag assigned to the system identifier check. 

 

Set the security-flag down 

security-flag-down : ⟼ TrnDen 

security-flag-down.().sta = 

 is-error.sta   ➔ sta 
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 let 

  (env, (vat, ‘OK’)) = sta 

 vat.check = ‘not’ ➔ ‘security-flag-is-down’ 

 true      ➔ (env, (vat[check/’not’], ‘OK’)) 

 

This constructor generates an error if the flag is already down. This solution is, of course, not a mathematical 

necessity but an engineering decision that protects a programmer from committing a mistake. If he/she wants 

to set down a flag that is already down, then maybe he/she does not quite understand the functionality of his 

program. The second constructor of this group sets the flag up. 

 

Set the security-flag up 

security-flag-up : ⟼ TrnDen 

security-flag-up.().sta = 

 is-error.sta   ➔ sta 

 let 

  (env, (vat, ‘OK’)) = sta 

 vat.check = ‘yes’ ➔ ‘security-flag-is-up’ 

 true      ➔ (env, (vat[check/’yes’], ‘OK’)) 

 

Similarly as for instructions also for transactions we may apply a sequential composition: 

 

sequence-trn : TrnDen x TrnDen ⟼ TrnDen 

sequence-trn.(trd-1, trd-2) = trd-1 ● trd-2 

 

The last constructor related to transactions creates an instruction from a transaction. For its definition, we shall 

need a function that removes all security copies. Its definition is, of course, recursive: 

 

remove-all-security-copies : ⟼ TrnDen 

 remove-all-security-copies.().sta = 

  is-error.sta    ➔ sta 

  let 

   ((ten, pre), (vat, ‘OK”)) = sta 

   sgr = ten.sb-graph 

  sgr = Ø      ➔ sta 

  {ide} = sgr     ➔ remove-security-copy.ide.sta 

  {ide-1,…,ide-n} = sgr ➔ remove-security-copy.ide ● remove-all-security-copies.() 

 

The constructor which transforms a transaction into an instruction is defined as follows: 
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trn-into-ins : TrnDen ⟼ InsDen 

trn-into-ins.trd.sta = 

 is-error.sta ➔ sta 

 true    ➔ [remove-all-security-copies.() ● security-flag-up.()]. sta 

 

This constructor is used to transform a block of transactions (maybe a one-element block) into an instruction. 

This constructor also removes all security copies and sets the security flag up.  

As we see, the mechanism of transactions is used to the executions of such table modifications that allow 

for a temporary deactivation of integrity checks and of the mechanism of security copies. 

10.9.6.5 Global table instructions 

A global table-instruction is an instruction which when modifying a table modifies at the same time other 

tables to protect integrity constraints of a database. E.g. in SQL-standard if we remove a row from a parent 

table in the CASCADE mode (Sec. 9.5) then this may cause the removal of all rows from a child table which 

point to the removed row in the parent table. In that case “cascade” means that if a child table is a parent table 

for other tables, then this may result in the removals of rows from the other tables. The scheme of a definition 

of such a constructor is shown below: 

 

cut-ro-cas : Identifier x Transfer ⟼ InsDen 

cut-ro-cas.(ide, tra).sta = 

 is-error.sta        ➔ sta 

vat.ide = ?         ➔ sta ◄ ‘undeclared-identifier’ 

 let 

  (env, (vat, ‘OK)) = sta 

  (com-t, yok) = vat.ide 

 sort.com-t ≠ ‘Tq’      ➔ ‘table-expected’ 

 let 

  com-n = co-cut-ro-from-tab.(com-t, tra) 

 com-n : Error        ➔ sta ◄ com-n 

 let 

  sta-n = (env, (vat[ide/(com-n, yok)], ‘OK’)) 

 violated-yo.(com-n, yok, sta-n) ➔ sta ◄ ‘table-yoke-violated’ 

violated-sr.(com-n, sta-n)   ➔ remove-integrity-violations.sta-n 

 true           ➔ sta-n 

 

This instruction removes a row from a table by using the composite constructor co-cut-ro-from-tab. Then if 

table yoke has not been violated, but the integrity constraints has, then it activates the procedure remove-
integrity-violations. I do not define this procedure explicitly and regard it as a model parameter. Its definition 

would lead to technical considerations on searching procedures of subordination graphs, which would lead 

out of the scope of this book. 
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10.9.6.6 Local table instructions 

The instructions of this group change only the table they concern. They either create a new table or modify an 

existing one using the universal table assignment (Sec. 10.9.6.3) and the denotations of table expressions (Sec. 

10.9.2). In principle, we could avoid introducing such instructions into our model by allowing table assign-

ments in the language. Since, however, there are no such assignments in SQL (which does not mean that we 

have to exclude them from Lingua-SQL), I give below some examples of the constructors of local table 

instructions.  

 

add-ro : DatExpDen x Identifier ⟼ InsDen 

add-ro.(ded, ide,) =  

  assign-tb.(ide, Cdd[co-add-ro-to-tb].(ded, ide)) 

 

join : Identifier x Identifier x Identifier ⟼ InsDen 

join.(ide-n, ide-1, ide-2) =                    (n – new table) 

 assign-tb.(ide-n, Cdd[co-join-tb].(dat-variable.ide-1, dat-variable.ide-2)) 

 

intersect : Identifier x Identifier x Identifier ⟼ InsDen 

intersect.(ide-p, ide-1, ide-2) = 

 assign-tb.(ide-p, Cdd[co-intersect-tb].(dat-variable.ide-1, dat-variable.ide-2)) 

 

create-ref: Identifier x Identifier x Identifier x Identifier x Transfer ⟼ InsDen 

create-ref.(ide-n, ide-t1, ide-t2, ide-c, tra) =              (c – column) 

 assign-tb.(ide-n, Cdd[create-der-tb].(dat-variable.ide-t1, dat-variable.ide-t2, ide-c, tra)) 

 

change-co : Identifier x CompositeE x Yoke x Yoke ⟼ CompositeE 

change-co.(ide, val, yok-1, yok-2) = 

  assign-tb.(ide, Cdd[va-change-co-in-tb].(ide, val, yok-1, yok-2)) 

 

10.9.6.7 Queries 

Queries are similar to simple instructions with the difference that they always create a new table assigned to 

the system-identifier monitor. Consequently, we apply simplified assignments assign-mo that never violates 

any constraints since the transfer of the new value is TT. 

10.9.6.8 Transfer-replacement instructions 

The definition of the constructor of that group, that has been defined in Sec. 5.1.5.3, is 

replace-yo : Identifier x TraExpDen ⟼ InsDen, 

and applies directly to the SQL case without any changes. Of course, we have to extend the domain of transfer-

expression denotations. 
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10.9.6.9 Cursors 

Cursors (Sec. 9.10) are mechanisms used to get row-by-row from tables. In our model, that can be easily 

defined, e.g., by adding a column to a table that enumerates its rows.  

10.9.6.10 Views 

Views are virtually procedures that call table instructions. They may be introduced to our model either as 

predefined instruction or by providing programming mechanisms of procedures that operate on tables.  

10.9.6.11 Database instructions 

I assume that in Lingua-SQL, an initial valuation of program execution may carry some variables assigned 

to database values. 

I assume additionally that in every initial state of program execution, the system identifiers are bound to 

the following default values: 

tye.sb-graph  = Ø 

vat.copies  = Ø, 

vat.monitor = Ω               (interpreted as no data to be displayed) 

vat.check  = ‘yes’  

With these assumptions, each database program in Lingua-SQL that is supposed to operate on tables either 

has to create its own tables ― and a database thereof ― or to import an already existing database. In Lingua-

SQL, we have, therefore, only two database instructions that operate on tables and besides two instructions 

that modify a subordination graph. Their constructions are defined below in a simplified form to avoid too 

many technical details. 

  

Database activation 

activate : Identifier ⟼ InsDen 

activate.ide.sta = 

 is-error.sta     ➔ sta 

 let 

  ((tye, pre), (vat, ‘OK’)) = sta 

 tye.sb-graph = !    ➔ sta ◄ ‘active-base-already-exists’ 

 vat.ide = ?      ➔ sta ◄ ‘unknown-variable’ 

 not vat.ide : DbaVal  ➔ sta ◄ ‘database-expected’ 

let 

  (dbr, sgr) = vat.ide 

true       ➔ ((tye[sb-graph/sgr], pre), (vat ⧫ dbr, ‘OK)) 

 

This instruction overwrites the current valuation by a database record, which means that it stores in it table 

identifiers assigned to table values, and to the system variable sb-graph assigns the subordination graph of 

the activated base. Of course, it also checks whatever has to be checked. It does not allow us to create two 

databases at the same time (an engineering decision). I recall that DbaVal is the domain of database values 

defined in Sec. 0. 

The remaining database instruction writes all current table values in the database of the given name and 

removes from valuation all values except database values.  
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archive : Identifier ⟼ InsDen 

archive.ide.sta = 

 is-error.sta   ➔ sta 

 let 

  ((tye, pre), (vat, ‘OK’)) = sta 

 tye.sb-graph = ? ➔ sta ◄ ‘no-base-to-be-archived’ 

 vat.ide = !    ➔ sta ◄ ‘variable-declared’ 

  dbr    = tables-only.vat 

  new-vat  = remove-non-database.vat 

  dbv    = (dbr, tye.sb-graph) 

 true      ➔ ((tye, pre), (new-vat[ide/dbv], ‘OK’)) 

 

In this definition, I use two auxiliary functions tables-only and remove-non-database, whose obvious def-

initions are omitted. I also assume that the instruction does not allow to overwrite an existing database by a 

new database. It is, of course, an engineering decision.  

In this definition, one might include a principle that tables which are considered as “temporary” are not 

subject to archiving. To do that, we could assume that, e.g., their identifiers are somehow labelled.  

Notice that database archiving that assigns a database to an identifier does not require that this identifier 

has been declared. 

Constructors that generate instructions that modify subordination graphs correspond to adding and remov-

ing an edge of a graph.  

 

declare-subordination : Identifier x Identifier x Identifier  ⟼ InsDen 

declare-subordination.(ide-c, ide, ide-p).sta = 

 is-error.sta     ➔ sta 

 let 

  ((tye, pre), env, (vat, ‘OK’)) = sta 

 vat.ide-i = ?     ➔ ‘no-such-table’         for i = c, p 

 let 

  (com-i, tra-i) = vat.ide-I               for i = c, p 

sort.com-i ≠ ‘Tq’   ➔ ‘table-expected’ 

let 

  ((tab-i, (‘Tq’, row-d-i, (‘Rq’, ror-i)), yok-i) = vat.ide-i     for i = c, p 

 ror-i.ide = ?     ➔ ‘no-such-column’        for i = c, p 

 let 

  sgr = tye.sb-graph 

 (ide-c, ide, ide-p) : sgr ➔ ‘redundant-declaration’ 

 com-c Sub[ide] com-n ➔ sgr | {(ide-c, ide, ide-p)} 
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 true        ➔ ‘subordination-not-satisfied’  

 

Before adding a new edge to a subordination graph, this instruction checks if the subordination holds. If the 

concerned tables are large, then this check may be computationally expensive. This action, however, cannot 

be avoided if we want to protect database integrity. 

The second operation does not require such a check since it only removes an edge from a subordination 

graph. 

 

call-off-subordination : Identifier x Identifier x Identifier ⟼ InsDen 

call-off-subordination.(ide-c, ide, ide-p).sta = 

 is-error.sta     ➔ sta 

 let 

  ((tye, pre), (vat, ‘OK’)) = sta 

  sgr        = vat.sb-graph 

  (ide-c, ide, ide-p) : sgr ➔ sgr – {(ide-c, ide, ide-p)}  

true        ➔ ‘no-such-subordination’ 

10.10 Concrete syntax 

For a reader who reached this section designing a concrete syntax of Lingua-SQL should be relatively easy. 

Therefore I restrict further investigations to grammatical clauses related to SQL. The syntax, which is de-

scribed below, is probably not very optimal since it contains rather long keywords. My goal is, however, not 

to build a „practical” language but only to show a method of building such a language. For the same reason, 

my concrete syntax is not very close to the SQL standard. Long keywords correspond directly to the names of 

constructors, which should help the reader to understand their meaning.  

It is worth noticing that compared to Lingua-2, we now have a new syntactic category of transactions. The 

keywords ed, et, and ei are read respectively as „end of declaration”, „end of transaction” and „end of 

instruction”.  

 

Data expressions 

dae : DatExp =  

 …                   (here stand are all clauses of Lingua-2) 

Expressions generating empty composites 

 empty-bool                      | 

 empty-number                     | 

 empty-word                      | 

 … 

Row expressions 

row Identifier val DatExp ee                | 

expand-row DatExp at Identifier by DatExp ee         | 

reduce-row DatExp at Identifier ee             | 
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row DatExp at Identifier ee                   | 

change-row DatExp at Identifier by DatExp ee         | 

 

Row table expressions 

  table DatExp at Identifier ee               | 

add-row DatExp to Identifier ee              | 

delete-row TraExp from Identifier ee           | 

  remove Identifier from Identifier ee              | 

 clear Identifier with TraExp ee               | 

 intersect Identifier with Identifier ee           | 

 union Identifier with Identifier ee             | 

 

Column table expressions 

 add-column Identifier with DatExp to Identifier  ee      | 

 remove-column Identifier from Identifier  ee         | 

 filter-columns AcPaDe from Identifier  ee 

 remove-column Identifier from Identifier  ee         | 

 update-column Identifier in Identifier  with TraExp  

where TraExp ee  | 

Expression creating derivative table 

 table Identifier with Identifier  at Identifier   

where TraExp ee  | 

 

Transfer expressions 

wtr : TraExp = 

 …                   (here stand all clauses of Lingua-2) 

 row . Identifier | 

unique    | 

 all TraExp ee 

 

Type expressions 

wyt :TypExp =  

…                   (here stand all clauses of Lingua-2) 

 row-type Identifier as TypExp ee           | 

expand-row-type TypExp by Identifier as TypExp ee  | 

table-type DatExp as TraExp ee 
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Type constant declarations 

 

There are no new clauses in this group. Of course, the “former clauses” refer to new type expressions. 

 

Data-variable declarations 

vde :VarDec =  

…                  (here stand both clauses of Lingua-2) 

create table Identifier as TypExp ed 

 

Transactions 

trn : Transaction =  

 add DatExp to Identifier et           | 

 delete DatExp from Identifier et        | 

 exclude Identifier from Identifier et       | 

 add column Identifier with DatExp to Identifier et | 

 drop column Identifier from Identifier et     | 

 select columns AcPaDe from Identifier et    | 

update Identifier at Identifier with TraExp et   | 

savepoint Identifier et             | 

release savepoint Identifier et         | 

rollback Identifier et             | 

rollback Identifier if DatExp et         | 

constraints off               | 

constraints on               | 

Transaction ; Transaction 

 

Instructions 

ins : Instruction =  

 …                   (here stand all clauses of Lingua-2) 

Table instructions 

 delete cascade TraExp from Identifier ei         | 

 add row DatExp to Identifier ei              | 

union Identifier with Identifier into Identifier ei       | 

 intersect Identifier with Identifier into Identifier ei     | 

 create Identifier from Identifier and Identifier col Identifier 
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where TraExp ei | 

 modify column Identifier in Identifier by TraExp 

where TraExp ei | 

Database instructions 

 activate Identifier                    | 

 archive as Identifier                     | 

 set reference of Identifier et Identifier to Identifier ei        |    

 clear reference of Identifier et Identifier to Identifier ei    | 

 

Queries 

Queries are assignments (hence instructions) that assign a created table to the system identifier monitor and 

do not check anything since there is no type assigned to that monitor. Consequently, their denotations are 

slightly different from corresponding instructions, which means that their syntaxes must differ accordingly. I 

assume that they are created from corresponding instruction by adding a prefix show 

 

que : Query = 

 show Identifier                      | 

show union Identifier with Identifier into Identifier ei    | 

 show intersect Identifier with Identifier into Identifier ei  | 

 show create Identifier from Identifier and Identifier  

col Identifier where TraExp ei 

 

In the end, one methodological remark. In Lingua-SQL, we have all constructors of data expression denota-

tions of Lingua-2. In particular, we have all the table expressions. We also have assignments where such 

expressions may appear. All these tools are rather far from SQL standard and may lead ― with complex 

expressions ― to hardly readable programs and difficult to formulate proof rules. 

An alternative solution may consist in allowing only Lingua-2 expressions and row expressions, in dispos-

ing of table expressions, and in using table instruction for step-by-step construction of tables. This solution 

does not mean, however, that at the model level, we cannot introduce constructors of table-expression deno-

tations. However, when designing the syntax, we may take an engineering decision that some of these con-

structors are not included in the signature of the algebra of denotations. They may be treated as auxiliary 

functions used only at the level of the model. In such a case, their syntactic counterparts will not appear in 

syntax. 

10.11 Colloquial syntax 

The majority of new syntactic constructions of Lingua-SQL does not seem to require the introduction of 

colloquialisms. They may be made more user-friendly at the level of concrete syntax. However, the introduc-

tion of colloquialisms may be worthwhile in the case of table-variable declarations to make them closer to a 

typical SQL-syntax. Let us consider an example of such a declaration written in an SQL style (cf. Sec.9.3): 

 

create table Employees with 
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 Name      Varchar(20)  NOT NULL, 

 Position     Varchar(9),  

 Salary     Number(5)   DEFAULT 0, 

 Bonus      Number(4)   DEFAULT 0, 

 Department_Id  Number(3)   REFERENCES Departments, 

CHECK (Bonus < Salary) 

ed 

The restoring transformation would change this declaration into a sequential composition of a table-variable 

declaration and a database instruction: 

create table Employees as  

table-type dat_exp with yok_exp ee  

ed ; 

set reference of Employees et Department_Id to Departments ei 

where dat_exp and tra_exp represent a type expression and a yoke expression, respectively. 

Restoring the data expression by means of row-creation and row-expansion constructors and the transfer 

expression with transfer-expression constructors we get the following concrete version of our colloquial dec-

laration: 

create table Employees as        the beginning of the declaration 

 table-type              the beginning of type expression 

 expand-row             the beginning of data expression 

expand-row  

expand-row 

 expand-row 

row Name val empty-word ee 

by Position val empty-word ee 

by Salary val 0 ee 

by Bonus val 0 ee 

  by Department_Id by empty-number ee   the end of data expression 

 with          the beginning of transfer expression (yoke expression) 

 all   

varchar(20)(row.Name)     and 

not-null(row.Name)       and   

varchar(9)(row.Position)    and  

 number(5)(row.Salary)     and 

 number(4)(row.Bonus)      and 

 number(3)(row.Department_Id) and 

row.Bonus < row.Salary 

ee            the end of transfer expression (yoke expression) 
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 ee                     the end of type expression 

ed ;                      the end of declaration 

set reference of Employees et Department_Id to Departments ei 

Of course varchar(20), varchar(9),… are the names of appropriate predicates. Notice that in this 

example one “syntax unite” from the colloquial lever is transformed into a sequential composition of a decla-

ration and an instruction.  

10.12 The rules of correct-program constructions 

The enrichment of the former versions of Lingua to Lingua-SQL consists basically on the extension of data- 

and type-algebras whereas new instructions are table modifications that on the denotational level refer to the 

generalised assignment. For the author of validation rules, this means the necessity of defining new conditions 

and new properties (Sec. 8.2 and Sec. 8.4.1). This should be postponed, however, until some practical version 

of Lingua-SQL is created. 
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11  LINGUA-OO — OBJECT-ORIENTED PROGRAMMING 

(WORK IN PROGRESS) 

Work on this section is in progress. 
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12  WHAT REMAINS TO BE DONE 

Even though the book is already of a considerable volume, the majority of subjects have only been sketched. 

What remains to be done is enough for a few more books and also as a research and development area for 

many researchers and developers. Below I suggest a preliminary list of subjects which is certainly not com-

plete. It considers both research problems as well as programming (implementational) tasks.  

12.1 Foundations 

12.1.1 The extension of Lingua model 

All currently described languages from the Lingua family ― maybe except Lingua-3 (object programming) 

― cover mainly traditional programming tools developed in the years 1960-1980. Since they are present today 

in the majority of programming languages, it was somewhat natural to start with them, which does not mean, 

however, that the model of Lingua should not be developed further. In my opinion, the next step should be 

the extension of our model by newer mechanisms, e.g., by script languages of HTML type or concurrency 

based on Mazurkiewicz and/or Petri model. 

A few minor research problems have been mentions in the central part of the book. 

12.1.2 The completion of the Lingua model 

The development of a complete (a practical) model for Lingua covering not only denotations, syntax, and 

semantics but also sound program-construction rules. In the last area, a closer look at assertions (Sec. 8.3) may 

be worthwhile since, so far, this issue has only been sketched.  

12.1.3 The principles of writing user manuals 

Denotational models should provide an opportunity for the revision of current practices seen in the manuals 

of programming languages. New practices should, on the one hand, base on denotational models, but on the 

other ― do not assume that today's’ readers are experts in this field. A manual should, therefore, provide some 

basic knowledge and notation needed to understand the definition of a programming language written in a 

new style. At the same time ― I firmly believe in that ― it should be written for professional programmers 

rather than for amateurs. The role of a manual is not to teach the skills of programming. Such textbooks are, 

of course, necessary, but they should tell the readers what the programming is about rather than the technical-

ities of a concrete language. Unfortunately, the current practice usually contradicts this principle. 

12.2 Implementation 

First attempt to build an implementation of Lingua has been undertaken by a small group of two teachers (me 

and Aleksy Schubert) and three of our students of the Department of Mathematics, Informatics, and Mechanics 

of Warsaw University (see [33]) during the Spring Semester of the year 2020. To tell the truth, my role was 

limited in this case to checking if the developed implementation was compatible with the model of Lingua, 

as described in this book. The programming language of implementation was OCaml.  
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12.2.1 Tools for language developers 

1. A tool generating abstract-syntax grammar from a signature (a meta-definition) of the algebra of de-

notations. 

2. A tool supporting the development of a concrete-syntax grammar form an abstract-syntax grammar. 

3. A tool supporting the generation of a restoring application from colloquial syntax into a concrete syn-

tax. 

4. An editor supporting the writing of the definitions of denotation constructors. 

5. A generator of semantic clauses from a concrete-syntax grammar and the definitions of denotation 

constructors. 

6. A generator of an interpreter/compiler code from semantic clauses.  

12.3 Tools for programmers 

An editor supporting program-development using correct-metaprogram development rules must be developed. 

12.4 Manuals 

To provide a practical value for the methodology which is contained in Lingua, there must be user manuals 

that follow that methodology. And, of course, they have to base on principles mentioned in Sec. 12.1.3. As a 

matter of fact, both these tasks should be developed in parallel. To describe rules for writing manuals, some 

experiments in writing manuals should take place, and experimental manuals must follow the developed gen-

eral rules.  

12.5 Programming experiments 

For our idea of correct-program development to be noticed by the IT community, some convincing applica-

tions must be shown. In my opinion, an adequate field for such applications may be microprograms because:  

1. microprograms contain a relatively small number of the lines of code, 

2. their correctness is highly critical, 

3. highly critical is also the memory- and time-optimisation of such programs. 

Each experimental program developed within our framework must be independently tested by usual industrial 

tests. 

12.6 Building a community of Lingua supporters 

Our methods of designing programming languages and constructing programs may be assessed positively or 

negatively, but one seems to be evident ― they are indeed quite far from current practices. What the book 

offers is a far-going change, and such changes always provoke springing up groups of opponents and support-

ers. The former should be convinced, and the latter must be kept. And of course, one has to start from the first 

task. 

To realize that task one has to give the potential supporters some, may be very simple, still sufficiently 

practical, version of Lingua or ― as an alternative ― encourage them to build their own version. The first 

solution seems somewhat unrealistic since it would require finding an investor for a strange and utterly un-

known product. The other way that remains means that an experimental Lingua is built by volunteers and for 

volunteers, as in the case of Linux, Joomla! or Drupal. However, such a product, although freely available, 

should not by an open-source product since this might lead to mathematically incorrect solutions and conse-

quently to unsound program-construction rules.  
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The community of Lingua builders must, therefore, elaborate rules of accepting new members and of giv-

ing them rights for joining implementation teems.  
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13 ANNEXE 1 ― GENERALIZED TREES 

To be translated from the Polish version of the book. 

14 ANNEXE 2 ― ABOUT USER MANUALS 

To be translated from the Polish version of the book. 

  



Andrzej Blikle (in cooperation with Piotr Chrząstowski-Wachtel), A Denotational Engineering of Programming Languages     284 

 

 

 

15 REFERENCES 

[1] Aalst Wil van der, Hee Kees van, Workflow management: models, methods, and systems (Coopera-

tive Information Systems), MIT Press 2004 

[2] Ahrent Wolfgang, Beckert Bernhard, Bubel Richard, Hähnle Reiner; Schmitt Peter H., Ulbrich Mat-

tias (Eds.), Deductive Software Verification — The KeY Book; From Theory to Practice, Lecture 

Notes in Computer Science 10001, Springer 2016 

[3] Aho A.V., Ullman J.D., The Theory of Parsing, Translation, and Compilation, volume 1, Parsing, 

Prentice-Hall, Englewood Cliffs, NJ 1972 

[4] Apt K.R., Ten Years of Hoare's Logic: A Survey - Part 1, ACM Trans. Program. Lang. Syst. 3(4): 

431-483 (1981) 

[5] Apt Krzysztof R., Olderog Ernst-Rüdiger, Fifty years of Hoare's Logic, Springer 2020 

[6] Apt Krzysztof R., Boer (de) Frank, S., Olderog Ernst-Rüdiger, Verification of Sequential and Con-

current Programs, Third, Extended Edition, Springer 2020 

[7] Backus J.W., Bauer F.L., Green J., Katz C., McCarthy J., Naur P. (Editor), Perlis A.J., Rutishauser 

H., Samelson K., Vauquois B., Wegstein J.H., Van Wijngaarden A., Woodger M., Report on the al-

gorithmic language ALGOL 60, Numerische Mathematik 2, 106--136 (1960)  

[8] Bakker Jaco (de), Mathematical Theory of Program Correctness, Prentice/Hall International 1980 

[9] Banachowski Lech, Bazy danych. Tworzenie aplikacji, Akademicka Oficyna Wydawnicza PLJ,  

Warszawa 1998 

[10] Banachowski Lech, Kreczmar Antoni, Mirkowska Grażyna, Rasiowa Helena, Salwicki Andrzej, An 

introduction to Algorithmic Logic ― Metamathematical Investigations of Theory of Programs, T. 2: 

Banach Center Publications.  Warszawa PWN, 1977, s. 7-99, series: Banach Center Publications, 

vol.2 

[11] Barringer H., Cheng J.H., Jones C.B., A logic covering undefinedness in program proofs, Acta Infor-

matica 21 (1984), pp. 251-269 

[12] Bekić Hans, Definable operations in general algebras and the theory of automata and flowcharts 

(manuscript), IBM Laboratory, Vienna 1969 

[13] Binsbergena L. Thomas van, Mosses Peter D., Sculthorped C. Neil, Executable Component-Based 

Semantics, Preprint submitted to JLAMP, accepted 21 December 2018 

[14] Bjørner Dines, Jones B. Cliff, The Vienna development method: The metalanguage, Prentice-Hall 

International 1982 

[15] Bjørner Dines, Oest O.N. (ed.), Towards a formal description of Ada, Lecture Notes of Computer 

Science 98, Springer Verlag 1980 

[16] Blikle Andrzej, Automaty i gramatyki ― wstęp do lingwistyki matematycznej, (Automata and 

Grammars ― An Introduction to Mathematical Linguistics) PWN 1971 

[17] Blikle Andrzej, Algorithmically definable functions. A contribution towards the semantics of pro-

gramming languages, Dissertationes Mathematicae, LXXXV, PWN,  Warszawa 1971 

[18] Blikle Andrzej, Equational Languages, Information and Control, vol.21, no 2, 1972 

[19] Blikle Andrzej, Analysis of programs by algebraic means, Mathematical Foundations of Computer 

Science, Banach Center Publications, vol.2, Państwowe Wydawnictwa Naukowe,  Warszawa 1977 

http://lem12.uksw.edu.pl/images/4/42/Bcp211.pdf
http://lem12.uksw.edu.pl/images/4/42/Bcp211.pdf


Andrzej Blikle (in cooperation with Piotr Chrząstowski-Wachtel), A Denotational Engineering of Programming Languages     285 

 

[20] Blikle Andrzej, Toward Mathematical Structured Programming, Formal Description of Program-

ming Concepts (Proc. IFIP Working Conf. St. Andrews, N.B Canada 1977, E.J Neuhold ed. pp. 183-

2012, North Holland, Amsterdam 1978 

[21] Blikle Andrzej, On Correct Program Development, Proc. 4th Int. Conf. on Software Engineering, 

1979 pp. 164-173 

[22]  Blikle Andrzej, On the Development of Correct Specified Programs, IEEE Transactions on Soft-

ware Engineering, SE-7 1981, pp. 519-527 

[23] Blikle Andrzej, The Clean Termination of Iterative Programs, Acta Informatica, 16, 1981, pp. 199-

217. 

[24] Blikle Andrzej, MetaSoft Primer ― Towards a Metalanguage for Applied Denotational Semantics, 

Lecture Notes in Computer Science, Springer Verlag 1987 

[25] Blikle Andrzej, Denotational Engineering or from Denotations to Syntax, red. D. Bjørner, C.B. 

Jones, M. Mac an Airchinnigh, E.J. Neuhold, VDM: A Formal Method at Work, Lecture Notes in 

Computer Science 252, Springer, Berlin 1987 

[26] Blikle Andrzej, Three-valued Predicates for Software Specification and Validation, first published 

in VDM’88, VDM: The Way Ahead, Proc. 2nd, VDM-Europe Symposium, Dublin 1988, Lecture 

Notes of Computer Science, Springer Verlag 1988, pp. 243-266, later republished in Fundamenta 

Informaticae, January 1991 

[27] Blikle Andrzej, Denotational Engineering, Science of Computer Programming 12 (1989), North 

Holland 

[28] Blikle Andrzej, Why Denotational ― Remarks on Applied Denotational Semantics, Fundamenta 

Informaticae 28, 1996, pp. 55-85 

[29] Blikle Andrzej, An Experiment with a user manual based on denotational semantics, preprint 2019, 

DOI: 10.13140/RG.2.2.23355.67366 

[30] Blikle Andrzej, An Experiment with denotational semantics, SN Computer Science, (2020) 1: 15. 

https://doi.org/10.1007/s42979-019-0013-0, Springer 

[31] Blikle Andrzej, Jarosław Deminet, Komputerowa edycja dokumentów dla średnio zaa-

wansowanych, (Computer-assisted edition of documents for medium-advanced authors), Helion 

2020 

[32] Blikle Andrzej, Mazurkiewicz Antoni, An algebraic approach to the theory of programs, algo-

rithms, languages and recursiveness, Proc. International Symposium and Summer School on Mathe-

matical Foundations of Computer Science, Warsaw-Jabłonna, 1972. 

[33] Blikle Andrzej in cooperation with Schubert Aleksander, Dziubiak Marian, Kamas Tomasz, Lin-

gua-WU Report and a diary of the development of its implementation, a manuscript in statu nascendi  

Blikle Andrzej, Tarlecki Andrzej, Naïve denotational semantics, Information Processing 83, R.E.A. 

Mason (ed.), Elsevier Science Publishers B.V. (North-Holland), © IFIP 1983 

[34] Blikle Andrzej, Tarlecki Andrzej, Naïve denotational semantics, Information Processing 83, R.E.A. 

Mason (ed.), Elsevier Science Publishers B.V. (North-Holland), © IFIP 1983 

[35] Blikle Andrzej, Tarlecki Andrzej, Thorup Mikkel, On conservative extensions of syntax in system 

development, Theoretical Computer Science 90 (1991), 209-233 

[36] Branquart Paul, Luis Georges, Wodon Pierre, An Analytical Description of CHILL, the CCITT 

High-Level Language, Lecture Notes in Computer Science vol. 128, Springer-Verlag 1982 

[37] Chailloux Emmanuel, Manoury Pascal, Pagano Bruno, Developing Applications With Objective 

Caml, Editions O'REILLY, http://www.editions-oreilly.fr 

[38] Chomsky Noam, Three models for the description of language, IRE Transactions of Information 

Theory, IT2, 1956 

https://doi.org/10.1007/s42979-019-0013-0
http://www.editions-oreilly.fr/


Andrzej Blikle (in cooperation with Piotr Chrząstowski-Wachtel), A Denotational Engineering of Programming Languages     286 

 

[39] Chomsky Noam, Syntactic Structures, Hague 1957 

[40] Chomsky Noam, On certain formal properties of grammars, Information and Control, 2, 1959 

[41] Chomsky Noam, Context-free grammar and pushdown storage, MIT Research Laboratory Electri-

cal Quarterly Progress Reports 65, 1962 

[42] Cohn P.M., Universal Algebra, D. Reidel Publishing Company 1981 

[43] Dijkstra Edsger, W., goto statements considered harmful, Communications of ACM, 11, 1968, pp. 

147-148 

[44] Dijkstra Edsger, W., A constructive approach to the problem of program correctness, BIT 8 (1968) 

[45] Dijkstra Edsger, W., A Discipline of Programming, Prentice-Hall, Inc., Englewood Cliffs, New Jer-

sey 1976 

[46] DuBois Paul, MySQL, Wydanie II rozszerzone, Mikom,  Warszawa 2004 

[47] Floyd Richard W., Assigning meanings to programs, Appl. Math. Comput. 19, 1967, pp. 19-32 

[48] Forta Ben, SQL w mgnieniu oka, Helion 2015 

[49] Ginsburg Seymur, The mathematical theory of context-free languages, New York 1966 

[50] Ginsburg Seymur, Rice, H.G., Two Families of Languages Related to Algol, Journal of the Associa-

tion of Computing Machinery, 9 (1962) 

[51] Goguen, J.A., Abstract errors for abstract data types, in Formal Descriptions of Programming Con-

cepts (Proc. IFIP Working Conference, 1977, E.Neuhold ed.), North-Holland 1978 

[52] Goguen, J.A., Thatcher J.W., Wagner E.G., Wright J.B., Initial algebra semantics, and continuous 

algebras, Journal of ACM 24 (1977) 

[53] Gordon M.J.C., The Denotational Description of Programming Languages, Springer Verlag, Berlin 

1979 

[54] Gruber Martin, SQL, Helion 1996 

[55] Hoare C.A.R., An axiomatic basis for computer programming, Communications of ACM, 12, 1969, 

pp. 576-583 

[56] Jensen Kathleen, Wirth Niklaus, Pascal ― User Manual and Report, Springer Verlag 1975 

[57] Kleene Steven Cole, Introduction to Metamathematics, North-Holland 1952; later republished in 

years 1957, 59, 62, 64, 67, 71 

[58] Konikowska Beata, Tarlecki Andrzej, Blikle Andrzej, A three-valued Logic for  Software Specifica-

tion and Validation, w tomie VDM’88, VDM: The Way Ahead, Proc. 2nd, VDM-Europe Sympo-

sium, Dublin 1988, Lecture Notes of Computer Science, Springer Verlag 1988, pp. 218-242 

[59] Landin, P. The mechanical evaluation of expressions, BSC Computer Journal, 6 (1964), 308-320  

[60] Leszczyłowski Jacek, A theorem of resolving equations in the space of languages, Bull. Acad. 

Polonaise de Science, Série de Sci. Math. Astronom. Phys. 19 (1971) 

[61] Leroy Xavier, Doligez Damien, Frisch Alain, Garrigue Jacques, Rémy Didier, Vouillon Jérôme, 

The OCaml system release 4.10, Documentation and user’s manual, February 21, 2020,  Copyright © 

2020 Institut National de Recherche en Informatique et en Automatique 

[62] Madey Jan, Od wnioskowania gramatycznego do walidacji specyfikacji wymagań, w tomie „Symu-

lacja w badaniach i rozwoju”, tom 6, Politechnika Białostocka; na Researchgate https://www.resear-

chgate.net/publication/283225534_Od_wnioskowania_gramatycznego_do_walidacji_specyfika-

cji_wymagan_From_grammatical_inference_to_validation_of_requirements_specification  

[63] Madey J., Matwin S., Pascal — opis języka, Sprawozdania IInf UW nr 54 oraz 55, Wydawnictwa 

Uniwersytetu Warszawskiego, Warszawa 1976 

https://www.researchgate.net/publication/283225534_Od_wnioskowania_gramatycznego_do_walidacji_specyfikacji_wymagan_From_grammatical_inference_to_validation_of_requirements_specification
https://www.researchgate.net/publication/283225534_Od_wnioskowania_gramatycznego_do_walidacji_specyfikacji_wymagan_From_grammatical_inference_to_validation_of_requirements_specification
https://www.researchgate.net/publication/283225534_Od_wnioskowania_gramatycznego_do_walidacji_specyfikacji_wymagan_From_grammatical_inference_to_validation_of_requirements_specification


Andrzej Blikle (in cooperation with Piotr Chrząstowski-Wachtel), A Denotational Engineering of Programming Languages     287 

 

[64] Mazurkiewicz Antoni, Proving algorithms by tail functions, Information and Control, 18, 1971, pp. 

220-226 

[65] McCarthy John, A basis for a mathematical theory of computation, Western Joint Computer Con-

ference, May 1961 later published in Computer Programming and Formal Systems (P. Brawffort and 

D. Hirschberg eds), North-Holland 1967 

[66] Microsoft Press (opr. w. polskiej Piotr Stokłosa), Microsoft Access 2000 — wersja polska, Wydaw-

nictwo RM, 2000 

[67] Naur Peter (ed.), Report on the Algorithmic Language ALGOL60, Communications of the Associa-

tion for Computing Machinery Vol. 3, No.5, May 1960 

[68] Niemiec Andrzej, Wielkość współczesnego oprogramowania, Biuletyn PTI nr 4-5, 2014 

[69] Norton Peter, Samuel Alex, Aitel David, Eriv Foster-Johnson, Richardson Leonard, Diamond Ja-

son, Parker Aleatha, Michael Roberts, Python od podstaw, Wydawnictwo Helion 2006 

[70] Parnas D.L., Asmis G.J.K., Madey J., Assessment of Safety-Critical Software in Nuclear Power  

Plants, Nuclear Safety 32, 2, April-June 1991, str. 189-198.  

[71] Paszkowski Stefan, Język ALGOL 60, PWN 1965 

[72] Plotkin Gordon D, An operational semantics for CSP, in: Formal Description of Programming Con-

cepts II, D. Bjørner, ed., North-Holland, Amsterdam, pp. 199–225.  

[73] Sephens Ryan, Jones D. Arie, Plew Ron, SQL w 24 godziny. Helion 2016 

[74] Stoy, J.E., Denotational Semantics: The Scott-Strachey Approach to Programming Language The-

ory, MIT Press, Cambridge, MA 1977 

[75] Scott D., Strachey Ch., Towards a mathematical semantics of computer languages, Technical Mon-

ograph PRG-6, Oxford University 1971. 

[76] Tarski Alfred, Pojęcie prawdy w językach nauk dedukcyjnych, Prace Towarzystwa Naukowego 

Warszawskiego, Nr 34, Wydział III, 1933, str.35  

[77] Tucker  J. V., Zucker J. I..  Program  Correctness  over  Abstract  Data Types, with Error-State Se-

mantics. North-Holland and CWI Monographs, Amsterdam, 1988. 

[78] Turing Alan, On checking a large routine, Report of a Conference on High-Speed Calculating Ma-

chines, University Mathematical Laboratory, Cambridge 1949, pp. 67-69. 

[79] Vera (del) Pilar Castillo, Curley Martin, Fabry Eva, Gottiz Michael, Hagedorn Peter, Herczog Edit, 

Higgins John, Joyce Alexa, Korte, Werner, Lanvin Bruno, Parola Andrea, Straub Richard, Tapscott 

Don, Vassallo John, Manifest w sprawie e-umiejętności, European Schoolnet (EUN Partnership 

AISBL)  

[80] Viescas John, Podręcznik Microsoft Access 2000, wydawnictwo RM 2000 

 

Blikle Andrzej in cooperation with Schubert Aleksander, Alenkiewicz Joachim, Dziubiak Marian, 

Kamas Tomasz, Lingua-WU Report and a diary of the development of its implementation, a manuscript 

in statu nascendi   

 

 

 

 

 



Andrzej Blikle (in cooperation with Piotr Chrząstowski-Wachtel), A Denotational Engineering of Programming Languages     288 

 

 

16 INDICES AND GLOSSARIES  

16.1 Index of terms and authors 

abstract error ..................................................... 46 

abstract syntax .................................................. 56 

aggregating function ....................................... 233 

aktualne parametry wartościowe ..................... 147 

algebra of composites ....................................... 86 

algebra of expression denotations ............ 102, 294 

algebra of types ................................................ 96 

algorithmic condition ...................................... 188 

ambiguous algebra ............................................ 59 

ambiguous grammar ......................................... 63 

applicative layer of a language .......................... 68 

Apt K.............................................................. 164 

arity of a function ............................................. 53 

array ..........................................................79, 237 

Asmis G.J.K. .................................................. 165 

assertion ......................................................... 189 

atomic declaration .......................................... 127 

atomic instruction .................................... 130, 190 

Bakker (de) Jaco ............................................. 197 

binary relation .................................................. 41 

body ................................................................. 82 

body of a procedure ........................................ 148 

body record....................................................... 82 

body-creating constructor ................................. 85 

Boolean value ................................................... 97 

call of a functional procedure .......................... 156 

call of an imperative procedure ....................... 151 

call-time state ................................................. 142 

carrier of an algebra .......................................... 53 

Cartesian power ................................................ 30 

chain ................................................................. 36 

chain-complete partially ordered set .................. 36 

child ........................................................ 227, 237 

Chomsky’s polynomial ..................................... 40 

clan of a body ................................................... 82 

clan of a type .................................................... 96 

clan of yoke ...................................................... 90 

clean evaluation .............................................. 196 

clean total correctness ..................................... 171 

CLI ................................................................. 222 

codomain of a relation ...................................... 41 

Collatz hypothesis .......................................... 172 

colloquial syntax ......................................... 66, 73 

column ............................................................ 248 

composite .......................................................... 86 

compositionality ................................................ 68 

computable partiality of functions ..................... 47 

concatenation of languages ................................ 38 

concatenation of tuples ...................................... 34 

concatenation of words ...................................... 38 

concrete semantics ............................................ 73 

concrete syntax ................................................. 73 

concretization homomorphism .......................... 73 

condition ......................................................... 184 

condition (declaration-oriented) ...................... 187 

conditions (data-oriented) ................................ 187 

conservative denotation ................................... 127 

constant ........................................................... 202 

constant of an algebra ........................................ 53 

constructor of an algebra ................................... 53 

context-free algebra ........................................... 61 

context-free grammar ........................................ 38 

context-free language ........................................ 38 

continuation .............................................. 69, 167 

continuous function ........................................... 36 

converse relation ............................................... 42 

copy rule ........................................................... 69 

correct metaprogram ......................... 27, 184, 196 

cursor .............................................................. 234 

cursor declaration ............................................ 234 

cursor grasp..................................................... 235 

data ........................................................... 79, 237 

data variable .................................................... 128 

database instruction ......................................... 271 

database record ............................................... 257 

database value ................................................. 257 

declaration of a functional procedure ............... 154 

declaration-time state ...................................... 142 

declared type constant ..................................... 129 

declared variable ..................................... 128, 129 

denotation ......................................................... 68 

descriptive layer ........................................ 27, 184 

domain .............................................................. 44 

domain of a function ......................................... 31 



Andrzej Blikle (in cooperation with Piotr Chrząstowski-Wachtel), A Denotational Engineering of Programming Languages     289 

 

domain of a relation .......................................... 41 

dynamically-compatible parameters ................ 145 

eager evaluation ................................................ 48 

empty data ...................................................... 237 

empty table ..................................................... 237 

empty type ........................................................ 96 

environment.................................................... 101 

equational grammar .......................................... 40 

equationally definable language ........................ 40 

error-handling mechanism .............................. 133 

error-state transparent denotation .................... 127 

existential quantifier ......................................... 30 

exporting expression ....................................... 154 

extension of a signature .................................... 53 

extension of an algebra ..................................... 54 

Fermat theorem............................................... 172 

field ................................................................ 225 

filtering function ............................................... 35 

five-step method ............................................... 74 

fixed point equation .......................................... 36 

flow-diagram .................................................. 166 

Floyd Richard ................................................. 164 

foreign key ..................................................... 227 

formal language ................................................ 38 

formal reference-parameters ........................... 140 

formal value-parameters ................................. 140 

function ............................................................ 42 

functional procedure ....................................... 154 

general quantifier .............................................. 29 

global table-instruction ................................... 269 

Goguen Joe ....................................................... 17 

goto instruction ................................................. 69 

Hoare C.A.R ................................................... 164 

homomorphism (many-sorted) .......................... 54 

identifier ......................................................... 292 

identity function ............................................... 32 

identity relation................................................. 41 

iff 192 

imperative denotation ..................................... 127 

imperative layer of a language .......................... 68 

iteration of a function........................................ 32 

iterative program ............................................ 166 

joint predicate ................................................. 231 

jump instruction .............................................. 166 

kernel of a homomorphism ............................... 55 

Kleene's propositional calculus ......................... 49 

lazy evaluation .................................................. 48 

least element ..................................................... 35 

least fixed point of a function ............................ 36 

least upper bound .............................................. 36 

left-hand-side linear equation .......................... 166 

limit of a chain .................................................. 36 

linking key ...................................................... 227 

list .............................................................79, 237 

local table instructions ..................................... 270 

Madey J .......................................................... 165 

many-sorted algebra .......................................... 52 

many-sorted language ....................................... 39 

mapping ............................................................ 31 

Mazurkiewicz A. ............................................. 164 

McCarthy’s propositional calculus .................... 48 

metacondition ................................................. 185 

metainstruction................................................ 195 

metapredicate .................................................. 192 

metaprogram ................................................... 195 

metaprograms ................................................. 185 

MetaSoft ........................................................... 15 

monotone function ............................................ 36 

multiprocedures .............................................. 153 

Olderog H.R. ................................................... 164 

one-one function ............................................... 42 

on-range .......................................................... 190 

operational semantics ........................................ 68 

overwriting of a function ................................... 33 

parent ...................................................... 227, 237 

parent-child edge ............................................. 228 

Parnas D.L. ..................................................... 165 

partial correctness ................................... 170, 171 

partial function .................................................. 30 

partial order....................................................... 35 

partial precondition ......................................... 171 

partially ordered set ........................................... 35 

passing actual parametrs .................................. 146 

polynomial ........................................................ 40 

polynomial equation ........................................ 168 

power of a language .......................................... 39 

primary constructor ............................. 78, 82, 110 

primary constructors.......................................... 79 

primary key ..................................................... 227 

principle of simplicity ....................................... 72 

procedure body ............................................... 142 

procedure content .................................... 142, 148 

procedure environment .................................... 101 

procedure name ............................................... 101 

programming layer .................................... 27, 184 

property .......................................................... 185 

proposition ...................................................... 184 

pseudocomposite ............................................. 101 

pseudovalue .................................................... 100 

query ....................................................... 231, 270 

reachable algebra .............................................. 58 

reachable subalgebra ......................................... 58 

record ........................................................ 79, 237 

record attribute .................................................. 79 

recovery mechanism........................................ 229 

reflexive domain ............................................... 69 

reflexivity ......................................................... 35 

register ............................................................ 219 



Andrzej Blikle (in cooperation with Piotr Chrząstowski-Wachtel), A Denotational Engineering of Programming Languages     290 

 

register-expression .......................................... 219 

register-identifier ............................................ 219 

register-invariant............................................. 219 

relation ............................................................. 41 

restoring transformation .................................... 73 

restriction of a signature.................................... 53 

roll-back value ................................................ 230 

row instruction ................................................ 262 

rows................................................................ 225 

Scott D. .......................................................... 167 

semantics .......................................................... 68 

semantics of abstract syntax .............................. 57 

sequential composition of relations ................... 41 

signature of an algebra ...................................... 52 

signature of constructor .................................... 53 

silna spełnialność predykatu ........................... 193 

similar algebras................................................. 54 

similar signatures .............................................. 55 

simple recursion ............................................. 169 

skeleton function .............................................. 61 

skeleton homomorphism ................................... 63 

skeleton of a function........................................ 61 

słaba spełnialność predykatu ........................... 193 

Sokołowski Stefan .......................................... 209 

sort of a function ............................................... 53 

specified instruction ................................. 184, 189 

specinstruction ................................................ 189 

SQL ................................................................ 222 

state ................................................................ 100 

statically-compatible parameters ..................... 144 

store................................................................ 101 

Strachey Ch. ................................................... 167 

strong invariant ............................................... 193 

structural constructor ...................................... 167 

structural data ................................................... 79 

structural domain .............................................. 79 

structured declaration ............................... 128, 129 

structured induction .......................................... 68 

structured instruction ...................................... 131 

structured programming .................................. 167 

subalgebra ........................................................ 54 

subordination indicator ................................... 238 

subordination of tables .................................... 237 

subordination relation ..................................... 227 

syntactic algebra ............................................... 61 

syntax ............................................................... 68 

table ................................................................ 225 

table value ....................................................... 257 

tail function ..................................................... 167 

total correctness .............................................. 170 

total function ..................................................... 30 

total order.......................................................... 35 

total postcondition ........................................... 171 

total precondition ............................................ 171 

transaction ............................................... 229, 265 

transfer .............................................................. 91 

transformational programming ........................ 184 

transitivity ......................................................... 35 

transparent for errors (constructor) .................... 97 

trivial instruction ............................................. 131 

truncation of a function ..................................... 31 

trust test ............................................................ 81 

tuple .................................................................. 33 

Turing Alan..................................................... 164 

type ................................................................... 96 

type constant ................................................... 129 

type environment ............................................ 101 

typewise procedure ........................................... 25 

typewise procedure call ..................................... 25 

typewise procedure declarations ........................ 25 

unambiguous algebra ........................................ 59 

unambiguous grammar ...................................... 63 

unambiguous key ............................................ 227 

update of a function ........................................... 33 

upper bound ...................................................... 36 

valuation ......................................................... 101 

variable ........................................................... 128 

view ........................................................ 233, 271 

view declaration .............................................. 234 

violation-control function ................................ 262 

virtual table ..................................................... 234 

Wagner Eric ...................................................... 17 

weak antisymmetricity ...................................... 35 

weak invariant ................................................. 193 

weak total correctness ..................................... 171 

word.................................................................. 38 

Wright Jessie ..................................................... 17 

wrt .................................................................... 37 

yoke .................................................................. 90 

yokeless type ..................................................... 96 

yokeless value ................................................... 97 

 



Andrzej Blikle (in cooperation with Piotr Chrząstowski-Wachtel), A Denotational Engineering of Programming Languages     291 

 

16.2 Index of notations 

ε     : empty word 

⊆    : a subset of 
→   : partial functions 
⟼  : total functions  
⟹  : mappings 
●    : composition of relations  
©   : concatenation 
∃    : there exists 
∀    : for all 

Ø    : empty set/relation 
⊑     : partial order 
Ɵ     : empty element 
Ω     : pseudo data 
{a.i | i=1;n} : a set  
(a.i | i=1;n) : a sequence 
[a.i/b.i | i=1;n] : a mapping 
Rel.(A,B) : set of relations 

[A] : subset of identity rel. 
⧫   : overwriting a function  
@  : algorithmic formula 
■    : end of theorem/proof 
  : stronger than (Windings 240) 
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16.3 Glossary of algebras and domains 

This glossary serves mainly the authors of the book for keeping consistency in the use of metavariables. 

Sec. 2 METASOFT AND ITS MATHEMATICS 

Here we only list some special notation that are specific to this book. Subsections, where no new notation has 

been introduced, have been omitted.  

Sec. 2.1 Basic notational conventions of MetaSoft 

f⧫g — an overwriting of function f by function g 

₵  — Cartesian Concatenation of tuples 

CPO — abbr. Chain-complete Partially Ordered Set 

Sec. 2.4 A CPO of formal languages  

©  — concatenation of words and of languages 

Sec. 2.6 A CPO of binary relations 

Rel(A,B) — the set of all binary relations between A and B, 

P ● R  — sequential composition of relations, 

R*    — iteration of a relation, 

 

Sec. 3 General remarks about denotational models 

No specific notation. 

 

Sec. 4.3.1 Data 

alp : Alphabet 

ide : Identifier  

boo : Boolean  

num : Number 

wor : Word   

lis  : List   

arr : Array  

rec : Record 

dat : Data   

dat  : SimpleData 

 

Sec. 4.3.2 Bodies 

bod : Body 

bod : BodyE = Body | Error 

CLAN-Bo : BodyE ⟼ Sub.Data 

BOD : Data → Body 
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sort : BodyE ⟼ {(‘boolean’), (‘number’), (‘word’), ‘L’, ‘A’, ‘R’} 

Bc : data-algebra-operations ⟼ body-algebra-operations 

 

Sec. 4.3.3 Composites 

AlgCom — the algebra of composites 

com : Composite 

com : BooComposite 

com : CompositeE 

com : BooCompositeE 

 

oversized : Composite ⟼ Boolean 

round : Data ⟼ Data 

sort.(dat, bod) = sort.bod 

sort.ide    = ide 

data.(dat, bod) = dat 

body.(dat, bod) = bod 

data.ide   = ide 

body.ide   = ide 

 

Sec. 4.3.4 Yoke 

AlgYok — the algebra of yokes 

tra : Transfer 

yok : Yoke  

Tc[cco] — constructor of transfers where cco is a constructor of composites. 

CLAN-Tr : Transfer ⟼ Sub.Composite 

TT = Tc[create-bo.tt] 

FF = Tc[create-bo.ff] 

 

Sec. 4.3.5 Types 

AlgTyp — the algebra of types 

typ : Type 

typ : TypeE 

CLAN-Ty : Type ⟼ Sub.Composite 

 

4.3.6 Values 

AlgVal  

val : Value , ValueE 
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Sec. 4.4 Expression denotations 

Sec. 4.4.1 Memory states 

Ω  — a pseudodata 

sta : State  

env  : Env   

sto  : Store  

vat : Valuation 

tye   : TypEnv  

pre : ProEnv 

prc : Procedure 

 

Sec. 4.4.2 The algebra of denotations of Lingua-A 

The algebra of expression denotations — which we shall denote by AlgExpDen — contains six carriers: 

ide : Identifier   = …                      defined earlier 

ded : DatExpDen  = State → ValueE              data-expression denotations 

bed : BodExpDen  = State  ⟼ BodyE               type-expression denotations 

tra  : TraExpDen  = Transfer                  transfer-expression denotations 

yok : YokExpDen  = Yoke                   yoke-expression denotations 

ted : TypExpDen  = State ⟼  TypeE               type-expression denotations 

The denotations of transfer expressions and yoke expression are not functions on states since we assume that 

transfers and yokes are not storable. This is, of course, an engineering decision.  

Below we define constructors of the denotations of data expressions, body expressions, and type expres-

sions. Constructors of transfers and yokes have been already defined in Sec. 4.3.4.  

Denotations of data expression 

ded : DatExpDen 

and-ded : DatExpDen x DatExpDen ⟼ DatExpDen 

Cdd : constructors of values ⟼ constructors of data-expression denotations 

 

Sec. 4.4.4 Denotations of body-, trace, yoke- and type expression  

bed : BodExpDen 

ted : TypExpDen 

Cbd : constructors of bodies ⟼ constructors of body-expression denotations 

Ctd : constructors of types ⟼ constructors of type-expression denotations 

 

Sec. 4.5 Algebras of the syntax of expressions 

Sec. 4.5.1 Abstract syntax of Lingua-A  
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ide : IdentifierA 

da e : DatExpA 

tre  : TraExpA 

yoe  : YokExpA 

bod : BodExpA 

tex  : TypExpA 

 

Sec. 4.5.2 Concrete syntax of Lingua-A 

ide : Identifier 

dae  : DatExp 

tre  : TraExp 

yoe  : YokExp 

bod : BodExp 

tex  : TypExp 

 

Sec. 4.6 A sketch of the semantics of Lingua-A 

Cs : AlgExp ⟼ AlgExpDen 

with five components: 

Sid  : Identifier ⟼ Identifier 

Sde   : DatExp ⟼ DatExpDen 

Stre  : TraExp  ⟼ TraExpDen 

Syoe  : YokExp ⟼ YokExpDen 

Sbe  : BodExp ⟼ BodExpDen 

Ste  : TypExp  ⟼ TypExpDen 

 

Sec. 5 LINGUA-1 — AN IMPERATIVE LANGUAGE WITHOUT PROCE-

DURES 

Sec. 5.1 Denotations 

ide : Identifier    

ded  : DatExpDen  

tra  : TraExpDen  

bed : BodExpDen  

yok : YokExpDen 

ted : TypExpDen   

ded : DecDen 

ind   : InsDen    
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prd   : ProDen   

 

Sec. 5.2 Syntax 

Sec. 5.2.2 Concrete syntax 

New domains only. 

prg : Program 

dec : Declaration 

ins : Instruction 

 

Sec. 5.3 Semantics 

Sde : Declaration  ⟼ DecDen 

Sin  : Instruction ⟼ InsDen 

Spr  : Program   ⟼ ProDen 

 

Sec. 6 LINGUA-2 — PROCEDURES 

Sec. 6.1.3 Imperative procedures in a denotational framework 

ipr  : ImpPro = AcPaDe  x AcPaDe ⟼ Store → Store             imperative procedures 

apd : AcPaDe = Identifierc*                     list of actual-parameter denotations 

fpd : FoPaDe = (Identifier x TypExpDen)c*           list of formal-parameter denotations 

 

ipr  : ImpPro   = AcPaDe x AcPaDe ⟼ Store → Store              (imperative procedures) 

fpr   : FunPro   = AcPaDe x AcPaDe ⟼ Store → CompositeE    (functional procedures) 

pro  : Procedure = ImpPro | FunPro                          (procedures) 

 

idd  : IprDecDen = State ⟼ State              (denotations of imp. procedure-declarations) 

fdd   : FprDecDen = State ⟼ State            (denotations of fun. procedure-declarations) 

 

Sec. 6.3.1 Constructor of procedures  

ipc : IprConDen = FoPaDe x FoPaDe x ProDen 

 

Sec. 6.4.1 Multiprocedures and their components 

mcd : MprComDen = (Identifier x IprConDen)c+              multiprocedure-component denotations 

 

Sec. 6.5.3 Constructors of functional-procedure-denotation contents 

fcd : FprConDen = FoPaDe x ProDen x DatExpDen x TypExpDen 
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Sec. 6.8.2 Concrete syntax 

New domains only. 

acp : ActPar = empty-ap | Identifier | ( ActPar , Identifier ) 

fop : ForPar  = empty-fp | Identifier as TypExp sa | ( ForPar , Identifier as TypExp sa) 

ico : IprCon = ((val ForPar ref ForPar) Program ) 

mpc : MprCon = (Identifier, IprCon) | (MprCon , MprCon) 

fco : FprCon  = Identifier (ForPar)Pro return DatExp as TypExp ) 

 

dec : Declaration =  
(variable declaration and type declarations as in Lingua-1)  | 
proc Identifier IprCon  endproc         | 

mulproc MprCon endmulproc         | 

fun Identifier FprCon endfun  

 

   

Lingua-SQL, Sec. 10  ??? 

 

row : Row   = Identifier ⟹ SimData 

tab : Table  = Rowc* 

 

sbo : SimBody = {(‘boolean’), (“number’), (‘word’), (‘date’), (‘time’), (date-time’)} 

bod : RowBody = {‘Rq’} x BodRow  

ror   : BodRow = Identifier ⟹ SimBody 

bod : TabBody = {‘Tq’} x Row x RowBody 

 

com : SimCom =  

 {(dat, bod) | (dat, bod) : CompositeE and bod : SimBody} 

ϴ : CLAN-Bo.bod 

 

A sub[ide] B ― the subordination of tables 

col : ColumnE = SimComc+ | Error 

 

RowVal = {(com, tra) | sort.com = ‘Rq’ and tra.com = (tt, (‘boolean’))} 

TabVal = {(com, tra) | sort.com = ‘Tq’ and tra.com = (tt, (‘boolean’))} 

dbr : DatBasRec = Identifier ⟹ TabVal 

 

sb-graph ― that binds subordination graphs in type environments, 

copies  ― that binds finite sets of tables in valuations, 
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monitor  ― that binds tables in valuations, 

check  ― that binds words ‘yes’ and ‘no’ in valuations. 

 


