

AN EXPERIMENT
WITH

DENOTATIONAL
SEMANTICS

(a working version)

DOI: 10.13140/RG.2.2.31272.42249

Andrzej Jacek Blikle

Warsaw, April 16th, 2019

„An Experiment With Denotational Semantics” by Andrzej Blikle has been licensed under a Creative Com-
mons: Attribution — NonCommercial — NoDerivatives 4.0 International. For details see: https://creativecom-
mons.org/licenses/by-nc-nd/4.0/legalcode

https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode

Andrzej Blikle, An experiment with denotational semantics 2

Abstract
The paper is devoted to showing how to systematically design a programming language in “re-
verse order”, i.e. from denotations to syntax. This construction is developed in an algebraic
framework consisting of three many-sorted algebras: of denotations, of an abstract syntax and
of a concrete syntax. These algebras are constructed in such a way that there is a unique homo-
morphism from concrete syntax to denotations, which constitutes the denotational semantics of
the language.

Besides its algebraic framework, the model is set-theoretic, i.e. the denotational domains are
just sets, rather than Scott’s reflexive domains.

The method is illustrated by a layer-by-layer development of a virtual language Lingua: an
applicative layer, an imperative layer (with recursive procedures) and an SQL layer where Lin-
gua is regarded as an API (Application Programming Interface) for an SQL engine. The latter
is given a denotational semantics as well.

Mathematically the model is based on so-called naive denotational semantics [17], many-
sorted algebras [21], equational grammars [6], and a three-valued predicate calculus based on
a three-valued proposition calculus of J. McCarthy [25]. Three-valued predicates provide an
adequate framework for error-handling mechanisms and also for the development of a Hoare-
like logic with clean-termination [10] for Lingua. That logic is used in [16] for the development
of correctness-preserving programs’ constructors. This issue is, however, not covered by the
paper.

The langue is equipped with a strong typing mechanism which covers basic types (numbers,
Booleans, etc.), lists, arrays, record and their arbitrary combinations plus SQL-like types: rows,
tables and databases. The model of types includes SQL integrity constraints.

Keywords Set-theoretic denotational semantics, many-sorted algebras, three-valued predicate
calculus, a denotational model of types, abstract syntax, concrete syntax.

An invitation to project This paper has been prepared within a project Denotational Engineer-
ing described on:
http://www.moznainaczej.com.pl/denotational-engineering/denotational-engineering-eng.
Persons interested to join the project are invited to see:
http://www.moznainaczej.com.pl/an-invitation-to-the-project

http://www.moznainaczej.com.pl/denotational-engineering/denotational-engineering-eng
http://www.moznainaczej.com.pl/an-invitation-to-the-project

Andrzej Blikle, An experiment with denotational semantics 3

Contents
1 INTRODUCTION ... 4

1.1 REVERSING THE TRADITIONAL ORDER OF THINGS .. 4
1.2 WHAT IS IN THE PAPER .. 6
1.3 WHAT THIS PAPER IS NOT OFFERING .. 7
1.4 WHAT IS NEW IN MY APPROACH .. 7

2 MATHEMATICAL PRELIMINARIES ... 8

2.1 NOTATIONAL CONVENTIONS .. 8
2.2 MANY-SORTED ALGEBRAS... 11
2.3 EQUATIONAL GRAMMARS .. 13
2.4 ABSTRACT ERRORS .. 14
2.5 THREE-VALUED PROPOSITIONAL CALCULUS .. 15

3 GENERAL REMARKS ABOUT DENOTATIONAL MODELS ... 17

3.1 WHY DO WE NEED DENOTATIONAL MODELS? .. 17
3.2 FIVE STEPS TO A DENOTATIONAL MODEL ... 18
3.3 TWO LAYERS OF A PROGRAMMING LANGUAGE .. 20

4 THE APPLICATIVE LAYER OF LINGUA .. 21
4.1 THE DATA .. 21
4.2 COMPOSITES, TRANSFERS, YOKES, TYPES AND VALUES ... 22
4.3 EXPRESSIONS IN GENERAL ... 25
4.4 DATA EXPRESSIONS ... 26
4.5 TRANSFER EXPRESSIONS .. 27
4.6 TYPE EXPRESSIONS .. 28
4.7 THE CONCRETE SYNTAX OF EXPRESSIONS .. 29
4.8 THE COLLOQUIAL SYNTAX OF EXPRESSIONS .. 30

5 THE IMPERATIVE LAYER OF THE LANGUAGE ... 30

5.1 SOME AUXILIARY CONCEPTS ... 30
5.2 INSTRUCTIONS ... 31
5.3 VARIABLE DECLARATIONS AND TYPE DEFINITIONS ... 33
5.4 PROCEDURES ... 34
5.5 THE EXECUTION OF A PROCEDURE CALL .. 36
5.6 PREAMBLES AND PROGRAMS ... 38
5.7 THE CARRIERS OF OUR ALGEBRA OF DENOTATIONS ... 39

6 LINGUA-SQL .. 39
6.1 GENERAL ASSUMPTIONS ABOUT THE MODEL ... 39
6.2 DATA, BODIES AND COMPOSITES ... 39
6.3 THE SUBORDINATION OF TABLES ... 41
6.4 TRANSFERS .. 42
6.5 TYPES .. 43
6.6 DATABASE VALUES ... 43
6.7 STATES .. 44
6.8 DENOTATIONS AND THEIR CONSTRUCTORS.. 45
6.9 AN EXAMPLE OF A COLLOQUIAL SYNTAX .. 46
6.10 REMARKS ABOUT A POSSIBLE IMPLEMENTATION OF LINGUA-SQL ... 48

7 WHAT REMAINS TO BE DONE ... 48
7.1 THE DEVELOPMENT OF LINGUA ... 48
7.2 THE DEVELOPMENT OF A SOFTWARE ENVIRONMENT FOR LANGUAGE DESIGNERS 49
7.3 TWO BASIC RESEARCH PROBLEMS ... 49

8 REFERENCES .. 50

9 INDEX .. 52

Andrzej Blikle, An experiment with denotational semantics 4

1 Introduction

1.1 Reversing the traditional order of things
The problem of mathematically-provable program-correctness appeared for the first time in a
work of Alan Turing [29] published in conference-proceedings On High-Speed Calculating
Machines, which took place at Cambridge University in 1949. Later for several decades, that
subject was investigated usually as proving program correctness, but the developed methods
never became everyday tools for software engineers. Finally, these efforts were practically
abandoned what has been commented in 2016 by the authors of a monography Deductive Soft-
ware Verification [1]:

For a long time, the term formal verification was almost synonymous with functional verifi-
cation. In the last years, it became more and more clear that full functional verification is an
elusive goal for almost all application scenarios. Ironically, this happened because of advances
in verification technology: with the advent of verifiers, such as KeY, that mostly cover and
precisely model industrial languages and that can handle realistic systems, it finally became
obvious just how difficult and time-consuming the specification of the functionality of real sys-
tems is. Not verification but specification is the real bottleneck in functional verification.

In my opinion, the failure in constructing a practical system for program validation has had
two sources.

The first lies in the fact that in building a programming language we start from syntax and
only later — if at all — define its semantics. The second source is somehow similar but concerns
programs: we first write a program and only then try to prove it correct.

To build a logic of programs for a programming language, one must first define its semantics
on a mathematical ground. Since 1970-ties it was rather clear for mathematicians that such
semantics to be “practical” must be compositional, i.e., the meaning of a whole must be a com-
position of the meanings of its parts. Later such semantics were called denotational — the
meaning of a program is its denotation — and for about two decades researchers investigated
the possibilities of defining denotational semantics for existing programming languages. Two
most complete such semantics were written in 1980 for Ada [4] and for CHILL [18] in using a
metalanguage VDM [2]. A little later, but in the same decade, a minor exercise in this field was
a semantics of a subset of Pascal written in MetaSoft [11], the latter based on VDM.

Unfortunately, none of these attempts resulted in the creation of software-engineering tools
that would be widely accepted by the IT industry. In my opinion that was unavoidable since for
the existing programming languages a full denotational semantics simply cannot be defined
(see Sec.3). That was, in turn, the consequence of the fact that historically syntaxes were coming
first and only later researchers were trying to give them a mathematical meaning. In other words
— the decision of how to describe things preceded the reflection of what to describe.

In addition to that, two more issues were complicating denotational models of programming
languages. They were related to two mechanisms considered important in 1960-ties but later
abandoned and forgotten. One was a common jump instruction goto, the other — specific pro-
cedures that may take themselves as parameters (Algol 60, see [26]). The former has led to
continuations (see [22]), the latter to reflexive domains (see [27]). Both contributed to a

Andrzej Blikle, An experiment with denotational semantics 5

technical complexity of denotational models which was discouraging not only for practitioners
but even for mathematicians.

The second group of problems followed from a tacit assumption that in the development of
a mathematically correct program the development of a program should precede the proof of
its correctness. Although this order is quite obvious in mathematics — first theorem, then its
proof — it is rather awkward for an engineer who first performs all necessary calculations (the
proof) and only then builds his bridge or aeroplane.

The idea “first a program and correctness-proof later” seems not only irrational but also
practically rather unfeasible for two reasons.

First reason follows from the fact that a proof of a theorem is usually longer than the theorem
itself. Consequently, proofs of program correctness should contain thousands if not millions of
lines. It makes “hand-made proofs” rather unrealistic. On the other hand, automated proofs were
not available by the lack of formal semantics for existing programming languages.

Even more important seem, however, the fact that programs that are supposed to be proved
correct are usually incorrect! Consequently, correctness proofs are regarded as a method of
detecting errors in programs. In other words, we are first doing things in a wrong way to correct
them later. Such an approach does not seem very rational either.

As an attempt to cope with all the mentioned problems I propose some mathematical tools
and methods that allow for the development of programming languages with denotational se-
mantics. Their detailed description may be found in a preprinted book. To illustrate these meth-
ods an exemplary programming language, Lingua has been developed from denotations to syn-
tax (first publication of that method in [12]). In this way, the decision of what to do (denota-
tions) precedes the decision of how to express that (syntax).

Mathematically both the denotations and the syntaxes constitute many-sorted algebras
(Sec.2.2), and the associated semantics is the homomorphism from syntax to denotations. As
turns out, there is a simple method — to a large extend algorithmizable — of deriving syntax
from (the description of) denotations and the semantics from both of them.

At the level of data structures, Lingua contains Booleans, numbers, texts, records, arrays
and their arbitrary combinations plus SQL databases. It is also equipped with a relatively rich
mechanism of types, e.g. covering SQL-like integrity constraints1, and with tools allowing the
user to define his/her own types structurally. At the imperative level, Lingua contains struc-
tured instructions, type definitions, procedures with recursion and multi-recursion and some
preliminaries of object programming.

The issue of concurrency is not tackled in [16] since the development of a “fully” denota-
tional semantics for concurrent programs (if at all possible) would require separate research2.

Ones we have a language with denotational semantics, we can define program-construction
rules that guarantee the correctness of programs developed in using these rules. This method
was for the first time sketched in my paper [8] and in [16] is described in Sec.8. It consists in
developing so-called metaprograms which syntactically include their specifications. The
method guarantees that if we compose two or more correct programs into a new program, we

1 Except subordination relations which are described by a different mechanism.
2 There exist mathematical semantics of concurrency which can be said to be only “partially denota-
tional”. An example of such a solution is a “component-based semantics” (cf. [2]), where the denotations
of programs’ components are assigned to programs in a compositional way (i.e. the denotation of a
whole is a composition of the denotations of its parts), but the denotations themselves are so called
fucons whose semantics is defined operationally.

Andrzej Blikle, An experiment with denotational semantics 6

get a correct program again. The correctness proof of a program is hence implicit in the way
the program has been developed.

Basic mathematical tools used in my denotational models are the following:
1. fixed-point theory in partially ordered sets,
2. the calculus of binary relations,
3. formal-language theory and equational grammars,
4. fixed-point domain-equations based on so-called naive denotational semantics (cf. [17]),
5. many-sorted algebras,
6. abstract errors as a tool for the description of error-handling mechanisms,
7. three-valued predicate calculi of McCarthy and Kleene,
8. the theory of total correctness of programs with clean termination (cf. [10]).

All these tools are described in Sec.2 and Sec.8 of [16], and some of them are sketched in
Sec.1.4 of the present paper.

In constructing Lingua, I assume three priorities regarding the choice of programming
mechanisms:

• the priority of the simplicity of the model, i.e., the simplicity of denotations, syntax, and
semantics; this has laid to the resignation from, e.g., goto instruction and self-applica-
tive procedures,

• the priority of the simplicity of program-construction rules; e.g., the assumption that the
declarations of variables and procedures, as well as the definitions of types, should be
located at the beginning of a program,

• the priority of protection against “oversight errors” of a programmer; e.g., the resignation
of global variables in procedures and of side-effects in functional procedures.

All these commitments forced me to give up some programming constructions which — alt-
hough denotationally definable — would lead to complicated descriptions and even more com-
plicated program-construction rules. It is worth mentioning in this place that the priority of
simplicity is not new in the history of programming languages. For that very reason, program-
ming-language designers abandoned goto-s as well as self-applicative procedures.

The name Lingua has been chosen to commemorate the circumstances under which from
October to December 1969 I wrote my first denotational semantics of a very simple program-
ming language (this work was later published in Dissertationes Mathematicae [5] as my habil-
itation (postdoctoral) thesis). During three months as a scholar of the Italian Government, I was
working in the Istituto di Elaborazione dell’Informazione in Pisa. I didn't yet know the works
of Dana Scott or the concept of denotational semantics, and I constructed my language and its
semantics on a model theory known in mathematical logic. Only eighteen years later, in the
year 1987, I described (in [12]) the idea of how to develop syntax from detonations.

1.2 What is in the paper
I am deeply convinced that one can talk about programming in a precise and clear way. I also
believe that taking responsibility by software engineers should be possible in the same way as
it is in the case of the engineers of cars, bridges or aeroplanes. However, I am aware of the fact

Andrzej Blikle, An experiment with denotational semantics 7

that the existing tools for software engineers do not allow for the realisation of any of these
goals.

The paper contains many thoughts developed in the years 1960-1990 that later have been
abandoned. One of the teams developing these ideas was working in the Institute of Computer
Science of the Polish Academy of Sciences, and I had the pleasure to chair it. At that time we
have developed a semi-formal metalanguage MetaSoft dedicated to formal definitions of pro-
gramming languages (cf. [11]). This metalanguage is used in [16] and in the present paper as a
definitional vehicle for denotational models.

I am aware of the fact that the content of [16] represents a very restricted part of the world
of today’s programming languages. Something had to be chosen, however, to begin with. Lin-
gua contains, therefore, a selection of programming tools that have been known for many years
and that are still in use. In the future, I shall try to complete my models with those vehicles that
my readers will consider important. I also hope that maybe some of my readers will undertake
this challenge. Feel invited to cooperate.

1.3 What this paper is not offering
The quality of a program consists in:

1. the compatibility of the program’s specification with the expectations of its user,
2. the compatibility of the program itself with its specification.

In this paper, and in [16], I am tackling only the second aspect. My choice is not caused by the
fact that the first problem is less important, or that it has been already solved, but only because
the second problem was the main subject on my research for two decades and therefore I dare
to talk about it now3.

I also have to emphasise very strongly that my virtual language Lingua is not regarded nei-
ther as a practical programming language nor even as a standard of such a language although
maybe a real language will grow from Lingua in the future. At present, it only offers a platform
where to explain the constructions and the models discussed in [16]. I have tried to cover in it
the selected basic tools that are present in languages which are known to me today. I resigned
form concurrency, and object programming is in [16] only roughly sketched.

I believe, however, that there are enough applications today that can be developed in using
the tools described in [16].

1.4 What is new in my approach
By “my approach” I understand the ideas and techniques described in my early papers from [6]
to [15], which have been summarised and extended in the preprint book [16]. All these ideas
base on concepts well-known for years:

• denotational semantics of D. Scott’s and Ch. Strachey’s (cf. [27], [28]),

• generative grammars of N. Chomsky’s (cf. [19], [20]),

• Hoare’s logic of programs (cf. [23]),

3 I am convinced that the first problem is equally fascinating as the second. I would very much welcomed
any initiative of a cooperation in this field.

Andrzej Blikle, An experiment with denotational semantics 8

• on many-sorted algebras introduced to the mathematical foundations of computer sci-
ence by J. A Goguen, J.W, Thatcher, E.G Wagner and J.B Wright (cf. [21]),

• three-valued propositional calculus S.C. Kleene’s (cf. [24]).
What ― I believe is new in my approach ― is the following:

1. Programming language design and development:
1.1. Denotational model based on set-theory rather than on D. Scott’s reflexive domains

which makes the model much simpler and easy to be formalized.
1.2. A model of data-types that covers not only structured and user-defined types but

also SQL integrity constraints.
1.3. A formal, and to a large extend an algorithmic method of a systematic development

of syntax from denotations and of a denotational semantics from both of them.
1.4. The idea of a colloquial syntax which allows making syntax user-friendly without

damaging a denotational model.
1.5. Systematic use of error-elaboration in programs supported by a three-valued predi-

cate calculus.
2. The development of correct programs

2.1. A method of systematic development of correct programs with their specifications,
rather than an independent development of programs and specifications followed by
program-correctness proof.

2.2. The use of three-valued predicates to extend Hoare’s logic by a clean termination
property.

3. General mathematical tools
3.1. Equational grammars applied in defining the syntax of programming languages.
3.2. A three-valued calculus of predicates applied in designing programming languages

and in defining sound program constructors for such languages.

2 Mathematical preliminaries
For a full description of mathematical tools used in the development of denotational models see
Sec.2 of [16] Below there is a selection of concepts and notations that are used in the present
paper. They all come from MetaSoft [11] ― a metalanguage for the description of program-
ming languages4.

2.1 Notational conventions
I do not assume that the reader is acquainted with [16] and therefore I use only as much of my
metalanguage as necessary to make the paper sufficiently clear and concise. Let me start with
some basic notations:

• a : A means that a is an element of the set A; according to the denotational dialect
sets are most frequently called domains,

4 Developed in the decade 1980-1990 in the Institute of Computer Science of the Polish Academy of
Sciences by a team which I had a honor to chair.

Andrzej Blikle, An experiment with denotational semantics 9

• f.a denotes f(a), and f.a.b.c denotes ((f(a))(b))(c); intuitively f takes a as an argument
and returns the value f(a) which is a function which takes b as an argument and returns
the value (f(a))(b), which is again a function…

• f ● g denotes the sequential composition of functions, i.e. (f●g).a = g.(f.a)

• A → B denotes the set of all partial functions from A to B, i.e., functions which are
(possibly) undefined for some elements of A,

• A ⟼ B denotes the set of all total functions from A to B, i.e., functions undefined for
all elements of A; of course, A ⟼ B is a subset of A → B,

• A ⟹ B denotes the set of all finite function from A to B, i.e. functions defined for
only finite subsets of A; such functions are called mappings, and of course, each map-
ping is a particular case of a partial function,

• [a1/b1,…,an,bn] denotes a mapping that assigns bi to ai and is undefined otherwise,

• A | B denotes the set-theoretic union of A and B,

• A x B denotes the Cartesian product of A and B,

• Ac* denotes the set of all finite (possibly empty) tuples of the elements of A,

• Ac+ denotes the set of all finite non-empty tuples of the elements of A,

• If L is a formal language (i.e. a set of words), then L* denotes the set of all finite
concatenations of words in L,

• tt and ff denote logical values „true” and „false” respectively,

• many-character symbols like dom, bod, com denote metavariables running over do-
mains and if they are written with quotation marks as ‘abdsr’ denote themselves, i.e.,
metaconstants5.

• in the definitional clauses of Lingua instead of indexed variables like sta1, we write
sta1 or sta-1 which is closer to a notation used in programs.

In this paper three different linguistic levels are distinguished:
1. the level of the basic text of the paper written in Times New Roman,

2. the level of a formal, but not formalized, metalanguage MetaSoft written in Arial,
3. the level of formalized programming language Lingua whose syntax, i.e. programs are

written in Courier New.

The difference between “formal” and “formalized” is such that the former is introduced intui-
tively as a mathematical notation, whereas the latter requires an explicit definition of syntax
(usually by a grammar) and a formal definition of semantics.

A frequently used construction in MetaSoft is a conditional definition of a function with the
following scheme:

f.x =
p1.x g1.x
p2.x g2.x

5 Metavariables and metaconstants are objects of the metalanguage MetaSoft whereas variables and
constants are objects of the programming language Lingua.

Andrzej Blikle, An experiment with denotational semantics 10

…
true gn.x

where each pi is a classical predicate, i.e., a total function with logical values tt or ff, true is a
predicate which is always satisfied, and each gi is just a function. The formula above is read as
follows:

if p1.x is true, then f.x = g1.x and otherwise,

if p2.x is true, then f.x = g2.x and otherwise,
…

and in all other cases f.x = gn.x.
Intuitively speaking the evaluation of such a function goes line by line and stops at the first line
where pi.x is satisfied.

In the scheme above I also allow the situation where, in the place of a gi.x we have the
undefinedness sign “?” which means that for x that satisfies pi.x the function f is undefined.
This convention is used in conditional definitions of partial functions.

In such definitions we also use a technique similar to defining local constants in programs.
For instance if f : A x B ⟼ C we can write

f.x =
p1.x g1.x
let

(a, b) = x
p2.a g2.x
p3.b g3.x.

which is read as: “let x be a pair of the form (a, b)”. We can also use let in the following way:
f.x =

p1.x g1.x
let

y = h.x
p2.x g2.y
p3.x g3.y.

All these explanations are certainly not very formal, but the notation should be clear when it
comes to concrete examples in the sequel of the paper.

By [a1/vn,…,an/vn] I denote a finite-domain functions with domain {a1,…,an} and the cor-
responding values {v1,…,vn}. By f[a1/vn,…,an/vn] I denote an overwriting of f by
[a1/vn,…,an/vn], i.e. a function which differs from f only on the domain {a1,…,an}.

For any two functions f : A → B and g : B → C by f ● g denotes the sequential composition
of these functions, i.e.

(f ● g).a = g.(f.a)

Andrzej Blikle, An experiment with denotational semantics 11

2.2 Many-sorted algebras
The denotational model of a programming language investigated in [16]is based on the concept
of a many-sorted algebra. Half formally, a many-sorted algebra is a finite collection of sets,
called the carriers or sorts of the algebra, and a finite collection of functions called the con-
structors of the algebra. The constructors take arguments from and return their values to carri-
ers. A graphical representation of a two-sorted algebra of numbers and Booleans is shown in
Fig. 2.2-1. This algebra will be referred to as NumBool.

Fig. 2.2-1 Graphical representation of a two-sorted algebra NumBool

A textual representation of NumBool ― called the signature of this algebra ― is shown in the
left part of Fig. 2.2-2.

The algebra NumBool
1 : ⟼ Num
0 : ⟼ Num
+ : Num x Num ⟼ Num
= : Num x Num ⟼ Bool
< : Num x Num ⟼ Bool
tt : ⟼ Bool
ff : ⟼ Bool
not : Bool ⟼ Bool
or : Bool x Bool ⟼ Bool

The algebra NumBoolExp
1 : ⟼ NumExp
0 : ⟼ NumExp
+ : NumExp x NumExp ⟼ NumExp
= : NumExp x NumExp ⟼ BoolExp
< : NumExp x NumExp ⟼ BoolExp
tt : ⟼ BoolExp
ff : ⟼ BoolExp
not : BoolExp ⟼ BoolExp

 or : BoolExp x BoolExp ⟼ BoolExp
Fig. 2.2-2 The signatures of two mutually similar algebras

In our algebra, we have four zero-argument constructors 1, 0, tt, ff, one one-argument construc-
tor not, and four two-argument constructors +, =, <, or. The zero-argument constructors create
elements of carriers “from nothing”, whereas all other constructors create elements of carriers
from other elements of carriers.

An element of an algebra is called reachable if it can be constructed (reached) using the
constructors of the algebra. In NumBool, where Num denotes the set of all real numbers, the
reachable subset of Num contains only non-negative integers.

By a reachable subalgebra of an algebra we mean its subalgebra with carriers restricted to
their reachable parts. In our case, this is an algebra of nonnegative integers and Booleans.

An algebra is said to be reachable if all its carriers contain only reachable elements. Notice
that if we remove the zero-argument constructor 1 from NumBool, then the reachable subset
of Num becomes empty.

Andrzej Blikle, An experiment with denotational semantics 12

In the algebraic approach to denotational models, the algebra of program denotations (mean-
ings) is usually unreachable, whereas the algebras of syntax are reachable by definition (see
Sec.2.3).

On the right-hand side of Fig. 2.2-2 we have the signature of a syntactic algebra Num-
BoolExp of (variable-free) expressions. This algebra is similar to NumBool in the sense that
there is a one-one correspondence between the constructors and the carriers of both algebras,
and the “types of constructors” in one algebra are similar to the types in the other (for a formal
definition see Sec.2.11 of [16]). In our example this correspondence is implicit row-by-row in
the notation: 1 corresponds to 1, 0 corresponds to 0, NumExp corresponds to Num, + corre-
sponds to +, etc. The constructors of NumBoolExp create expressions. E.g. the constructor +
given two numeric expressions nexp-1 and nexp-2 creates the expression6:
+(nexp-1, nexp-2)

Examples of expressions are:
1, 0, +(1,1), +(1,+(1,0)), tt, not(<(1,+(1,1))

We shall assume that NumBoolExp contains only reachable expressions. Such algebra is im-
plicit in the signature of NumBool and, due to its reachability, is unique. Traditionally it is
called the abstract syntax of the algebra NumBool.

It may be easily proved that for every algebra Alg ― and in fact for its signature ― there
exists a unique algebra of abstract syntax AbsSyn. It is also easy to prove that there exists a
unique homomorphism:

 As : AbsSyn ⟼ Alg
We call it the abstract semantics of AbsSyn. Of course, a homomorphism between many-
sorted algebras is a tuple of functions ― one for every carrier. In the case of our example we
have two corresponding functions:

SemE : NumExp ⟼ Num
SemB : BoolExp ⟼ Bool

which satisfy the equations (called the semantic clauses):

SemE.[1] = 1

SemE.[+(nexp-1, nexp-2)] = SemE.[nexp-1] + SemE.[nexp-2] (2.2-1)

SemB.[<(nexp-1, nexp-2)] = SemE.[nexp-1] < SemE.[nexp-2]

etc.
For instance :

SemE.[+(1,+(1,0))] = 2

SemB.[<(+(1,+(1,0)),0)] = ff

Notice that our homomorphism is “gluing” many different expressions into the same number
or Boolean element, e.g.

SemE.[+(1,+(1,0))] = SemE.[+(1,1)] = 2

6 For simplicity I use here the same symbol “+” to denote a constructor of expressions and a syntactic
symbol of addition.

Andrzej Blikle, An experiment with denotational semantics 13

SemB.[<(+(1,+(1,0)),0)] = SemB.[<(0,0)] = ff

The notation of an abstract syntax is rather awkward and therefore abstract syntax is usually
transformed into a concrete syntax, which is more “user-friendly”. In our case it would corre-
spond to an infix notation where the concrete + given two expressions nexp-1 and nexp-2
creates the expression:
(exp-1 + exp-2)

and similarly for other constructors. From an algebraic perspective concrete syntax is an algebra
― let’s denote it by ConSyn ― defined in a way that guarantees the existence of two homo-
morphisms:

Co : AbsSyn ⟼ ConSyn ― the concretization of abstract syntax

Cs : ConSyn ⟼ Alg ― the (unique) concrete-syntax semantics.
and moreover that

As = Co ● Cs
More about a denotational model of programming languages in Sec. 3.2. Readers interested in
the mathematical justifications of the model are referred to sections from 2.10 to 2.13 of [16]
and to the references given there.

2.3 Equational grammars
Let A be an arbitrary finite set of symbols called an alphabet. By a word over A, we mean every
finite sequence of the elements of A including the empty sequence ε. If p and q are words, then
by their concatenation ― in symbols pq ― we mean a sequential combination of these words.

Sets of words over A are called formal languages or just languages over A. If P and Q are
languages, then the language

PQ = {pq | p : P and q : Q}
is called the concatenation of P and Q. Similarly to the Cartesian + and * defined in Sec.2.1
we define analogous operations on languages:

P0 = {ε}, Pn = PPn-1 for n > 0
P+ = U { Pn | n > 0}
P* = P+ | P0

By an equational grammar over an alphabet A we mean a set of recursive equations of the form:

X1 = p1.(X1,…,Xn)
…
Xn = pn.(X1,…,Xn)

where Xi’s run over languages over A and all pi’s are operations on languages constructed as
combinations of finite languages (constants), union, concatenation, power, star and plus opera-
tions. It may be proved that every equational grammar has a unique least7 solution which con-
stitutes a tuple (P1,…,Pn) of languages. Such a tuple will be called a many-sorted language.

7 In the sense of a component wise inclusion.

Andrzej Blikle, An experiment with denotational semantics 14

Every equational grammar defines unambiguously a reachable algebra of words. The fol-
lowing grammar defines the algebra NumBoolExp of Sec.2.2:

NumExp = 0 | 1 | +(NumExp, NumExp)

BoolExp = tt | ff | =(NumExp, NumExp) | <(NumExp, NumExp) |

 not(BoolExp) | or(BoolExp, BoolExp)

According to a usual style for writing grammars, the symbols 0, 1, tt, ff, +, =, <,
not, or, (,) and the coma denote one-element languages: {0}, {1},…

Equational grammars correspond closely to context-free grammars introduced by Noam
Chomsky (e.g. in [19]) in the sense that for each context-free grammar there exists an equational
grammar that defines the same many-sorted language, and for a certain class of equational
grammars there exists an equivalent context-free grammar. They have been introduced in [6]
and are also described in Sec.2.5 and Sec.2.14 of [16].

2.4 Abstract errors
For practically all expressions appearing in programs their values in some circumstances cannot
be computed “successfully”. Here are a few examples:

• the value of x/y cannot be computed if y = 0,

• the value of the expression x+1 cannot be computed if x has not been declared in the
program,

• the value of x+y cannot be computed if the sum exceeds the maximal number allowed
in the language,

• the value of the array expression a[k] cannot be computed if k is out of the domain of
array a, or if a is not an array,

• the query “Has John Smith retired?” cannot be answered if John Smith is not listed in
a database.

In all these cases a well-designed implementation should stop the execution of a program and
generate an error message or perform a recovery procedure.

To describe that mechanism formally, we introduce the concept of an abstract error. In a
general case abstract errors may be anything, but in our models, they are going to be texts such
as, e.g., ‘division-by-zero’. They are closed in apostrophes to distinguish them from metavari-
ables.

The fact that an attempt to evaluate x/0 raises an error message can be now expressed by the
equation:

x/0 = ‘division-by-zero’
In the general case with every domain Data, we associate a corresponding domain with abstract
errors

DataE = Data | Error
where Error denotes the set of all abstract errors that are generated by our programs. Conse-
quently every partial operation

op : Data1 x … x Datan → Data

Andrzej Blikle, An experiment with denotational semantics 15

whose partiality is computable8 may be extended to a total operation

 ope : DataE1 x … x DataEn ⟼ DataE
Of course ope should coincide with op wherever op is defined.

The operation ope is said to be transparent for errors or simply transparent if the following
condition is satisfied:

if dk is the first error in the sequence d1,…,dn, then ope.(d1,…,dn) = dk

Intuitively this condition means that arguments of ope are evaluated one-by-one from left to
right, and the first error (if it appears) becomes the final value of the computation.

The majority of operations on data that will appear in our models are transparent. Exceptions
are boolean operations discussed in Sec.2.5

Error-handling mechanisms may be implemented in such a way, that errors serve only to
inform the user that (and why) program execution has been aborted. Such a mechanism is called
reactive. Another option is that the generation of an error results in an action, e.g. of recovering
the last state of a database. Such mechanisms are called proactive.

A reactive mechanism may be quite easily enriched to a proactive one (see Sec.6.1.8 and
Sec.12.7.6.4 of [16]). However, since the latter is technically more complicated, in this paper
only reactive model will be discussed.

A well-defined error-handling mechanism allows avoiding situations where programs are
aborted without any explanation, or even worse — when they generate an incorrect result with-
out a warning of the user.

2.5 Three-valued propositional calculus
Tertium non datur — used to say ancients masters. Computers denied this principle.

In the Aristotelean classical logic, every sentence is either true or false. The third possibility
does not exist. However, in the world of computers, the third possibility is not only possible but
just inevitable. E.g. in evaluating a boolean expression x/y>2 an error will appear if x=0.

To describe the error-handling mechanism of boolean expressions, we introduce a domain
of Boolean values with an error

BooleanE = {tt, ff, ee}.
In this case, ee stands for “error”, but in fact, represents either an error or an infinite computa-
tion (a looping). In this section, we assume for simplicity that there is only one error. This
assumption does not disturb the generality of our model as long as all errors are handled in the
same way.

Now, it turns out that the transparency of boolean operators would not be an adequate choice.
To see that consider a conditional instruction:
if x ≠ 0 and 1/x < 10 then x := x+1 else x := x–1 fi

8 Informally speaking a partiality of a function F is computable if we can write a procedure which given
an arbitrary tuple d1,…,dn of arguments of F will check if F.(d1,…,dn) is or is not defined. E.g. for an array
expression arr[k] we can check if the index k belongs to the index range of the array arr. From the
general theory of computability we know, however, that there exist functions with non-computable par-
tialities.

Andrzej Blikle, An experiment with denotational semantics 16

We would probably expect that for x=0 one should execute x:=x-1. If however, our conjunc-
tion would be transparent, then the expression
x ≠ 0 and 1/x < 10

would evaluate to ‘division-by-zero’ which means that the program aborts. Notice also that the
transparency of and would imply

ff and ee = ee
which would mean that an interpreter that evaluates p and q first evaluates both p and q ― as
in “usual mathematics” ― and only later applies and to them. Such a mode is called an eager
evaluation.

An alternative to it is a lazy evaluation where, if p = ff, then the evaluation of q is skipped,
and the final value of the expression is ff. In such a case:

ff and ee = ff
tt or ee = tt

A three-valued propositional calculus with lazy evaluation was described in 1961 by John
McCarthy (in [25]) who defined boolean operators as shown in Tab. 2.5-1

or-m tt ff ee

tt tt tt tt
ff tt ff ee
ee ee ee ee

and-m tt ff ee

tt tt ff ee
ff ff ff ff

ee ee ee ee

not-m

tt ff
ff tt
ee ee

Tab. 2.5-1 Propositional operators of John McCarthy

To see the intuition behind the evaluation of McCarthy’s operators consider the expression
p or-m q assuming that its arguments are computed from left to right9:

• If p = tt, then we give up the evaluation of q (lazy evaluation) and assume that the value
of the expression is tt. Notice that in this case we maybe avoid an error message or an
infinite computation that could be generated by q.

• If p = ff, then we evaluate q, and its value ― possible ee ― becomes the value of the
expression.

• If p = ee, then this means that the evaluation of our expression aborts or loops at the
evaluation of its first argument, hence the second argument is not evaluated. Conse-
quently, the final value of the expression must be ee.

The rule for and is analogous. Notice that McCarthy’s operators coincide with classical oper-
ators on classical values (grey fields in the tables). McCarthy’s implication is defined
classically:

p implies-m q = (not-m p) or-m q
As it turns out, not all classical tautologies remain satisfied in McCarthy’s calculus. Among
those that are satisfied we have:

9 The suffix “-m” stands for “McCarthy” and is used to distinguish McCarthy’s operators not only from
classical ones but also from the operators of Kleene, which are used in SQL.

Andrzej Blikle, An experiment with denotational semantics 17

• associativity of and and or,

• De Morgan’s laws
and among the non-satisfied are:

• or-m and and-m are not commutative, e.g., ff and-m ee = ff but ee and-m ff = ee,

• and-m is distributive over or-m only on the right-hand side, i.e.
p and-m (q or-m s) = (p and-m q) or-m (p and-m s) however

(q or-m s) and-m p ≠ (q and-m p) or-m (s and-m p) since
(tt or-m ee) and-m ff = ff and (tt and-m ff) or-m (ee and-m ff) = ee

• analogously or-m is distributive over and-m only on the right-hand side,

• p or-m (not p) does not need to be true but is never false,

• p and-m (not p) does not need to be false but is never true.

3 General remarks about denotational models

3.1 Why do we need denotational models?
Denotational models of programming languages serve as a starting point for the realisation of
three tasks:

1. building the implementation of the language, i.e. its parser and interpreter or compiler,
2. creating rules of building correct specified programs,
3. writing a user manual.

In building a language in this way, we should observe one very important (although not quite
formal) principle of simplicity:

A programming language should be as simple and easy to use as possible, although without
damaging its functionality, mathematical clarity and the completeness of its description. The
same applies to the manual of languages and to the rules of building correct programs.
This principle shall be realised by caring to make:

1. the syntax of the language as close as possible to the language of intuitive mathematics,
for example, whenever this is common, we use infix notation and allow the omission of
“unnecessary” parentheses,

2. the structure of the language (i.e. program constructors) leading to possibly simple rules
of constructing correct programs (Sec.8 of [16]),

3. the semantics of the language easy to understand by the user rather than convenient for
the builder of implementation; for the latter an implementation-oriented equivalent
model may be written.

Special attention should be given to point 2 because the simplicity of the rules of building cor-
rect programs leads to a better understanding of programs by programmers. This fact was real-
ised already in the years 1970 and has led to the elimination of goto instructions. This decision
resulted in a major simplification of programs’ structures, which increased their reliability.

Andrzej Blikle, An experiment with denotational semantics 18

Following point 3, I will sometimes — as common in mathematics — "forget" about the
difference between syntax and denotations. E.g. I will talk about the value of an expression
x + y, rather than about the value of its detonation. I would say that the instruction x:=y+1
modifies variable x, instead of saying that the denotation of this instruction modifies the
memory state at variable x, etc. Of course, on a formal level syntax will be precisely distin-
guished from denotations.

3.2 Five steps to a denotational model
Building up Lingua I refer to an algebraic model described in Sec.2.2. This model corresponds
to the diagram of three algebras shown in Fig. 3.2-1. We build it in such a way that the existence
of the semantics Cs of concrete syntax is insured, and the equation:

As = Co ● Cs
is satisfied.

The construction of a denotational model begins with an algebra of detonation Den. Its con-
structors unambiguously determine the reachable subalgebra ReDen. From the signature of
Den, we unambiguously derive the abstract syntax algebra AbsSy. The first of these steps is
creative since it comprises all the major decisions about the future language. Contrary to it, the
derivation of AbsSy can be performed algorithmically. The corresponding algorithm takes the
description ― e.g. in MetaSoft ― of the signature of Den. This technique will be explained in
more details in the subsequent sections.

Fig. 3.2-1 An algebraic model of a programming language

As we saw in Sec.2.2, the abstract syntax is not very convenient for programmers. To make it
more user-friendly, in the next step we build a concrete syntax ConSy. In typical situations,
this is done by replacing prefix notation by infix notation and skipping some "unnecessary"
parentheses. A typical example of skipping parentheses is the replacement of a sequential com-
position of instructions in the abstract-syntax:
;(ins-1, ;(ins-2, ins-3))

by its concrete-syntax version:
ins-1 ; ins-2 ; ins-3

Although the corresponding homomorphism Co (concretisation) is “gluing” two abstract pro-
grams
;(ins-1, ;(ins-2, ins-3)) and

Andrzej Blikle, An experiment with denotational semantics 19

;(;(ins-1, ins-2), ins-3)

into the same concrete program, this parsing ambiguity (of the corresponding grammar) is not
harmful to the existence of a concrete semantics:

Cs : ConSy ⟼ ReDen
since abstract semantics As is gluing these programs into a common denotation10.

Another simplification that we may like to introduce into our language is the omission of
parentheses in numeric expression. E.g. instead of writing
(x + (y + z)))

we would like to write
x + y + z (3.2-1)

In this case, however, we end up with a syntax which does not have a semantics into Den, since
the expression (3.2-1) corresponds to two concrete expressions:
(x + (y + z))) and
((x + y) + z)

whose denotations are not the same. It is due to the fact that in every computer arithmetic there
is a limit for the “size” of a number. E.g. if the largest acceptable number is 10, then

(-4 + (10 + 3)) = ‘overload’ (an error-message, see Sec.2.4)
((-4 + 10) + 3) = 9

In other words, computer addition is not associative.
A usual solution in such a case is the assumption that expressions are evaluated from left to

right which means that (3.2-1) is evaluated as
((x + y) + z).

In other words, an interpreter of the language first add the “missing” parentheses and then eval-
uates the expression according to the concrete semantics. The same technique is used in the
evaluation of expressions with addition and multiplication, e.g.,
x + y + z * x

in which case the operation of adding parentheses refers to the priority of multiplication over
addition, hence the resulting concrete expression is:
((x + y) + (z * x))

To formalize this technique in our framework we introduce yet another algebra called a collo-
quial syntax and denoted by ColSy (Fig. 3.2-2). This algebra is not homomorphic to concrete
syntax and has a different signature. However, it is constructed in such a way there exists an
implementable transformation

Rt : ColSy ⟼ ConSy

10 Formally this means that the algebra of concrete syntax is not more ambiguous than the algebra of
denotation which guarantees the existence of a unique homomorphism between them (see Sec.2.13 of
[16]).

Andrzej Blikle, An experiment with denotational semantics 20

which “removes colloquialisms”, which in our case means adding the missing parentheses.
Such a transformation is called the restoring transformation and of course, is not a homomor-
phism.

A user manual of a programming language with colloquialisms describes concrete syntax by
a grammar, and the colloquialisms as additional grammatical clauses. This means that the pro-
grammer is free to use either a concrete syntax or a colloquial one.

Fig. 3.2-2 An algebraic model of a language with colloquial syntax

To sum up, the construction of a programming language with a denotational model consists of
five steps:

1. The construction of Den where we decide about the meaning of future programs and
their constructors. This is the most creative step where we decide about all the program-
ming mechanisms of our language.

2. The derivation of abstract syntax, i.e. its grammar, from the signature of Den. This step
is fully programmable.

3. The definition of concrete syntax, i.e. its grammar. To a certain degree, this is a creative
step again, although in this case it may be supported by a software tool which assists the
designer in transforming the grammar of abstract syntax into its concrete counterpart.

4. The description of the semantics Cs of concrete syntax. The definition of this semantics,
i.e. the semantic clauses as (2.2-1), may be derived algorithmically from the definitions
of Den, AbsSy and ConSy.

5. The enrichment of the concrete syntax by colloquialisms and the definition of the cor-
responding restoring transformation. This is again a creative step.

3.3 Two layers of a programming language
In the sequel of the paper we will see how to use the described model to construct a
programming languages with two basic layers of programming tools:

1. applicative layer covering data expressions and type expressions whose denotations are
functions from states to data and from states to types respectively,

2. imperative layer covering instructions and declarations whose denotations are functions
from states to states.

Andrzej Blikle, An experiment with denotational semantics 21

4 The applicative layer of Lingua

4.1 The data
Data available in Lingua may be split into two categories:

• simple data including Booleans, numbers, and words (finite strings of characters),

• structural data including list, many-dimensional arrays, records, and their arbitrary
combinations.

Structural data may „carry” simple data as well as other structural data. That means that we
may build “deep” data structures, e.g., lists that carry records of arrays. Lists and tables always
carry elements of the same type whereas records are not restricted in this way.

All our data (with abstract errors) and the corresponding constructors constitute a many-
sorted algebra of data.

Formally the data domains in Lingua are defined by the following set of so called domain
equations:

boo : Boolean = {tt, ff}
num : Number — the set of all numbers with restricted decimal representations

ide : Identifier — a fixed finite subset of the domain Alphabet+
wor : Word = {‘}Alphabet*{‘}
lis : List = Datac*
arr : Array = Number ⟹ Data
rec : Record = Identifier ⟹ Data
dat : Data = Boolean | Number | Word | List | Array | Record

The symbols boo, num, ide etc. which precede our equations are metavariables that will run
over the corresponding domains in further definitions. This is just another notational conven-
tion.

The domain Boolean consist of only two elements that represent “truth” and “false”. The
domains Alphabet, Number and Identifier, are the parameters of our model which means that
they may differ from one implementation to another.

The Alphabet is a finite set of characters (except quotation marks), while Identifier is a
finite fixed set of non-empty strings over Alphabet.

A word is a finite string (possibly empty) of the elements of Alphabet closed between apos-
trophes.

A list is a finite sequence (possibly empty) of arbitrary data.
An array is a mapping from numbers to data, and a record is a mapping from identifiers to

data.
A data is a boolean, a number, a word, a list, an array or a record. Notice that identifiers are

not included in data. They have been introduced only to define the domain of records. Identifiers
that appear in records are called record attributes.

Andrzej Blikle, An experiment with denotational semantics 22

As we see, the four last equations have a recursive character, and therefore the existence of
a solution of our set of equations is not evident. However, such a solution exists and is (in a
sense) unique11 which may be proved on the ground of the theory of chain-complete partially
ordered sets (Sec. 2.7 of [16]).

It is to be emphasized in this place that the domain of data, and all of its subdomains, are
larger than the corresponding sets of numbers, words, lists etc. that can be “generated” by the
programs of Lingua. Further on we make sure that:

1. all “executable” data are restricted in their size ― this is formalized be introducing a
universal predicate oversized defined for all data,

2. for any given list or array all its elements are of the same type (see Sec.4.2),

3. the domain of each array must be of the form {1,…,n}, i.e. must be a set of consecutive
positive integers starting from 1.

The constructors of data are defined in such a way that all reachable data satisfy the above
restrictions. This technique allows keeping our domain equations relatively simple.

4.2 Composites, transfers, yokes, types and values
Every data in Lingua has a type. Types describe properties of data but represent entities which
can be constructed and modified independently of data. Our mechanism of types allows pro-
grammers to define their own types for future use either in defining new types or in declaring
variables12.

Types are pairs consisting of a body and a yoke. Every type is associated with a set of data
of that type called the clan of the type.

Intuitively a body describes an “internal structure of a data” ― e.g., indicates that a data is
a number, a list or a record ― and formally is a combination of tuples and mappings. The
domain equation that defines the domain of bodies is the following13:

bod : Body =
{(‘Boolean’)} | {(‘number’)} | {(‘word’)} | (simple bodies)

{‘L’} x Body | (list bodies)
{‘A’} x Body | (array bodies)
{‘R’} x (Identifier ⟹ Body) (record bodies)

The bodies of simple data are one-element tuples of metaconstants, e.g. (‘Boolean’). The bodies
of lists and arrays are respectively of the form (‘L’, bod) or (‘A’, bod) where the body bod is
shared by all the elements of a list/array and where the initials ‘L’ and ‘A’ indicate that we are
dealing with a list/ array.

A record body is of the form (‘R’, body-record) where body-record is a metarecord of
bodies such as, e.g.:

Ch-name ; (‘word’),

11 It is unique in the sense that by the solution of such an equation we mean its least solution where
the ordering is the componentwise set-theoretic inclusion .
12 Technical details in Sec. 5.2 of [16].
13 This is again a recursive equation (as it was the case of data-domain equations) and again its
unique solution exists.

Andrzej Blikle, An experiment with denotational semantics 23

fa-name ; (‘word’),
award-years ; (‘A’, (‘number’)),
salary ; (‘number’),
bonus ; (‘number’)

The words on the left-hand-side of semicolons are attributes. The first two attributes and the
last two have simple bodies, whereas the third one ― an array body. For the sake of further
discussion, the body defined above will be referred to as employee.

With every body bod, we associate a set of data with that body called the clan of that body
and denoted by CLAN-Bo.bod. The function CLAN-Bo is defined inductively relative to the
structure of bodies. E.g., the set CLAN-Bo.employee contains records with numbers, words,
and one-dimensional number arrays assigned to the respective attributes.

Next important concept from the “world” of data and types is a composite which is a pair
(dat, bod) consisting of a data and its body such that:

dat : CLAN-Bo.bod
Composites are the results of data-expression evaluations (Sec.4.4). The use of composites per-
mits to describe the mechanism of checking if the arguments “delivered” to an operation are of
appropriate types. E.g., if we try to put a word on a list of numbers, the corresponding operation
will generate an error message.

Having defined composites, we can define transfers and yokes. Transfers are one-argument
functions that transform composites or errors into composites or errors and yokes are transfers
with Boolean composites as values. By a Boolean composite we mean (tt, (‘Boolean’)) or (ff,
(‘Boolean’)). Yokes may also assume abstract errors as values.

 Mathematically yoks are close to one-argument predicates on composites14. An example of
a yoke that describes a property of composites whose bodies are employee may be the ine-
quality:

record.salary + record.bonus < 10000,

This yoke is satisfied whenever its (unique) argument is a record composite with (at least) the
attributes salary and bonus, and the data corresponding to these attributes satisfy the corre-
sponding inequality. In this example

record.salary + record.bonus

is a transfer which is not a yoke. It transforms record composites into number composites. If
the argument of this yoke/transfer is not a record with attributes salary and bonus that carry
numbers, then the result of the computation is an error.

Yokes have been introduced into Lingua to describe SQL integrity constraints (for details
see Sec.12 of [16]).

Transfers have merely a technical role. We need them only to define an algebra where yokes
may be constructed. With every transfer we associate its clan:

 CLAN-Tr.tra = (com | tra.com = (tt, (‘Boolean’))}.

14 They “are closed to predicates” rather than simply “are predicates” since they assume as values
composites and abstract errors rather than just Boolean values tt and ff. Their logical constructors and,
or and not are the three-valued constructors of John McCarthy’s calculus defined by (Sec. 2.5).

Andrzej Blikle, An experiment with denotational semantics 24

Of course, the clans of transfers which are not yokes, are empty. By TT we denote the transfer
that yields (tt, (‘Boolean’)) for any composite.

A pair that consists of a body and a yoke is called a type. For technical reasons, types are
defined as pairs consisting of a body and an arbitrary transfer (i.e. not necessarily a yoke). With
every type typ = (bod, tra) we associate its clan which is the set of such composites whose
data belong to the clan of the body and which satisfy the transfer. Formally:

CLAN-Ty.(bod, tra) = {(dat, bod) | dat : CLAN-Bo.bod and (dat, bod) : CLAN-Tr.tra}
The last concept associated with data and types is value. A value is a pair (dat, typ), i.e.
(dat, (bod, tra)), which we sometimes write as ((dat, bod), tra). As we see, a value may be
regarded, either as a pair data-type or as a pair composite-transfer.

For technical reasons we also allow pseudo-values of the form (Ω, typ), where Ω is an ab-
stract object called a pseudo-data.

Values are assigned in memory states to the identifiers of variables. Variable declarations
assign pseudo values to variables, and initializing assignments replace Ω by a data.

As we are going to see, an assignment instruction ― i.e., an instruction that assigns values
to variables (see Sec.5.2) ― may only change the data assigned to a variable, and in some
special cases its body, but never its yoke. To change a yoke, we use special yoke-oriented in-
struction.

Summing up, the list of domains that are associated with data and their types in Lingua is
the following

dat : Data = … (the definition in Sec.4.1)

bod : Body = … (the definition above in this section)
com : Composite = {(dat, bod) | dat : CLAN-Bo.bod}
com : BooComposite = {(boo, (‘Boolean’)) | boo : Boolean}
tra : Transfer = (Composite | Error) ⟼ (Composite | Error)
yok : Yoke = (Composite | Error) ⟼ (BooComposite | Error)
typ : Type = Body x Transfer
val : Value = Data x Type

Similarly, as in many programming languages (although not in all of them), types in Lingua
have been introduced for four reasons:

1. to define a type of a variable when it is declared, and to assure that this type remains
unchanged (with some exceptions)15 during program executions,

2. to ensure that a data which is assigned to a variable by an assignment is of the type
consistent with the declared type of that variable,

3. to ensure that a similar consistency takes place when sending actual parameters to a
procedure or when returning reference parameters by a procedure,

15 These exceptions take place e.g. when we add a new attribute to a record or to a database table or
if we remove such attribute.

Andrzej Blikle, An experiment with denotational semantics 25

4. to ensure that in evaluating an expression, an error message is generated whenever data
“delivered” to that expression are of an inappropriate type, e.g., when we try to add a
word to a number or to put a record to a list of arrays.

4.3 Expressions in general
Expressions are syntactic objects and their denotations are functions from states to composites
(data expressions), to transfers (transfer expressions) or to types type expressions). In order to
define these concepts we start with the definition of a state:

sta : State = Env x Store (state)
env : Env = TypEnv x ProEnv (environment)
sto : Store = Valuation x (Error | {‘OK’}) (store)

vat : Valuation = Identifier ⟹ Value (valuation)16

tye : TypEnv = Identifier ⟹ Type (type environment)

pre : ProEnv = Identifier ⟹ Procedure | Function (procedure environ-
ment)17
As we see, states are binding identifiers to values, to types, to procedures, or to functions (func-
tional procedures) and besides they may store an error “in a dedicated register”. If a state does
not carry an error, then this register stores ‘OK’. Every state is therefore a tuple of the form:

(env, (vat, err)) where err : Error | {‘OK’}
Having defined states we can define the domains of expression denotations of three categories:

ded : DatExpDen = State → Composite | Error (data-expressions denotations)
tra : TraExpDen = Transfer (transfer-expressions denotations)
ted : TypExpDen = State ⟼ Type | Error (type-expressions denotations)

The denotations of data expressions are partial functions which is due to the fact that data ex-
pressions may include functional-procedure calls18.

The fact that denotations of transfer expressions are just transfers rather than functions from
states to transfers is a consequence of the fact that in our model transfers cannot be “stored” in
states, as it is in the case for data and types. This is, of course, an engineering decision rather
than a mathematical must. It has been assumed only for the sake of simplicity.

The three domains are the carriers of an algebra of expression denotations from which a
syntactic (concrete) algebra of expressions is derived (as sketched in Sec.3.2) with the carriers
DatExp, TraExp, TypExp. This leads to three functions of semantics which constitute a ho-
momorphism between our two algebras.

Sde : DatExp ⟼ DatExpDen
Stre : TraExp ⟼ TraExpDen
Ste : TypExp ⟼ TypExpDen

16 The metavariable running over valuations is “vat” since “val” has been reserved for values.
17 The domains Procedure and Function are defined in Sec. 5.4
18 Functional procedures may loop indefinitely and since this is not a computable property we cannot
expect to have an error message in that case.

Andrzej Blikle, An experiment with denotational semantics 26

4.4 Data expressions
Data expressions evaluate to composites or errors. With every operation on data, we associate
two constructors: of data-expression denotations and of data expressions. In this way, we define
two mutually similar algebras and a homomorphism between them. This homomorphism is
unique, is implicit in the definitions of both algebras and constitutes the semantics of data ex-
pressions. This section contains just one example of a syntactic constructor and of the corre-
sponding semantic clause.

Consider the data operation of the numeric division divide and its syntactic counterpart “/”.
The clause of our grammar (Sec.2.3) that corresponds to the syntactic constructor is

(DatExp / DatExp)

In the sequel instead of dealing directly with grammatical clauses, I shall write them in the form
of a syntactic scheme. In the present case:
(dae-1 / dae-2),

where dae-1 and dae-2 are metavariables denoting data expressions. The corresponding
clause of the definition of semantics is shown below. The syntactic argument is closed in square
brackets.

Sde.[(dae-1 / dae-2)].sta =

 let
 (env, (val, err)) = sta
 err ≠ ‘OK’ err
 Sde.[dae-i].sta = ? ? for i = 1,2

 let
 num-i = Sde.[dae-i]. (env, (val, err)) for i = 1,2

 num-i : Error num-i for i = 1,2
 let
 (dat-i, bod-i) = num-i for i = 1,2
 bod-i ≠ (‘number’) ‘number-expected’ for i = 1,2
 dat-2 = 0 ‘division-by-zero’
 let
 dat-3 = divide(dat-1, dat-2)
 oversized.dat-3 ‘overflow’
 true (dat-3, (‘number’))

In the above definition the clause

Sde.[dae-i].sta = ? ? for i = 1,2

stands for

Andrzej Blikle, An experiment with denotational semantics 27

Sde.[dae-1].sta = ?

Sde.[dae-2].sta = ?

and analogously for all similar clauses. Intuitively our definition should be read as follows:

• If the input state carries an error, then this error becomes the final result of the computa-
tion.

• Otherwise, we evaluate both component expressions, and if one of these evaluations does
not terminate, then (of course) the whole computation does not terminate.

• Otherwise, we check the bodies of both resulting composites and if one of them is not
(‘number’), then an appropriate error is generated.

• Otherwise, we check if the second argument of the division is zero, in which case an
error is generated.

• Otherwise, we check if the result of the division is not oversized in which case an error
is generated19.

• Otherwise, the result of division becomes part of the resulting composite.

4.5 Transfer expressions
Transfer expressions evaluate to transfers or errors. Since transfers are not usual in program-
ming languages ― at least not as we define them ― a few examples may be in order. Below
the “current composite” means the composite which is the (only) argument of the transfer.

273 ― the resulting composite is (273, (‘number)) inde-
pendently of the current composite,

record.price ― if the current composite carries a record with an attrib-
ute price, its body (‘number’) and its data dat, then
the resulting composite is (dat, (‘number’)), and other-
wise is an error.

all-list number ee ― this is a yoke; if the current composite does not carry a
list, then an error is generated, otherwise, if it is a list of
numbers then the resulting composite is (tt, (‘Bool-
ean’)), and otherwise, it is (ff, (‘Boolean’)),

record.price +
 record.vat < 1000

― this is a yoke; if the current composite does not carry an
appropriate record, then error and otherwise, if the sum
of data assigned to price and vat is less than 1000,
then (tt, (‘Boolean’)), and otherwise (ff, (‘Boolean))

Now let us consider a transfer expression with the asyntactic scheme
all-list tre ee.

19 In our definitions this part of procedure is described in an abstract way, but the implementation does
not need to preform it literarly, i.e. by first dividing the given numbers and only then checkig, if that was
possible. In an implementation a programmable solution should be chosen.

Andrzej Blikle, An experiment with denotational semantics 28

Such an expressions is satisfied if all elements of a current list satisfy the transfer tre. The
semantic clause is the following:

Stre.[all-list tre ee].com =

com : Error com
sort.com ≠ ‘L’ ‘list-expected’

let
 ((dat-1,…,dat-n), (‘L’, bod)) = com (list elements always have the same body)
 com-i = Stre.[tre].(dat-i, bod) for i = 1;n

 com-i : Error com-i for i = 1;n
 not com-i : BooComposite ‘a-yoke-expected’
 (∀ i = 1;n) com-i = (tt, (‘Boolean’)) (tt, (‘Boolean’))
 true (ff, (‘Boolean’))

This definition may be intuitively read as follows:
1. If the current composite is an error, then the result is this error.
2. Otherwise, if the current composite does not carry a list, then an error is signalized.

3. Otherwise, the transfer Stre.[tre] is applied to composites created from the data dat-i of
the list and the “internal body” bod of the list. Notice that lists carry data, rather than
composites.

4. If one of these composites is an error, then the first such an error is the result of the
computation.

5. If one of these composites is not a Boolean composite, then an error is generated.

6. If all resulting composites are (tt, (‘Boolean’)), then the resulting composite is (tt,
(‘Boolean’)), and otherwise, it is (ff, (‘Boolean’)).

4.6 Type expressions
Type expressions evaluate to types or errors. E.g., the denotation of the type expression:
record-type

Ch-name as word,

fa-name as word,

birth-year as number,

award-years as number-array,

salary as number,

bonus as number

ee

is a function on states that creates a record type or generates an error. This expression refers to
two built-in types word and number and one user-defined type number-array (arrays of
numbers).

Andrzej Blikle, An experiment with denotational semantics 29

Now consider an example of a syntactic scheme of an expression that creates a one-attribute
record type:
record-type ide as tex ee

where ide is an identifier and tex is a type expression. The corresponding semantic clause is
the following:

Ste.[record-type ide as tex ee].sta =

 let
 (env, (val, err)) = sta
 err ≠ ‘OK’ err
 let
 typ = Ste.[tex]. sta

 typ : Error num-i
 true ((‘R’, [ide/typ]), TT)

This clause is read as follows:
1. If the input state carries an error, then this error becomes the result of the computation.
2. Otherwise, we compute the type defined by tex, and if it is an error, then this error

becomes the result of the computation.

3. Otherwise, the resulting type is the record type ((‘R’, [ide/typ]), TT).

To construct a many-attribute record type we use the operation of adding an attribute to a given
record type with the following syntactic scheme:
expand-record-type tex-1 at ide by tex-2 ee

and to replace a current transfer of an arbitrary type defined by tex, by a new transfer tre,
we use a type expression with a scheme:
replace-transfer-in tex by tre ee

4.7 The concrete syntax of expressions
The full grammar of the syntax of expressions in shown in Sec.5.4.2 of [16][16]. Below only
an excerpt of it:

dae : DatExp =
true | false | number | word |

Identifier | (DatExp and DatExp) | (DatExp or DatExp) …|

(DatExp + DatExp) | (DatExp / DatExp) | DatExp glue DatExp |

list DatExp ee | push DatExp on DatExp ee | top(DatExp) |
…

if DatExp then DatExp else DatExp fi

In the first line of this clause, the metavariables number and word represent the fact that all
numbers and words up to a certain size are acceptable as expressions. At the level of

Andrzej Blikle, An experiment with denotational semantics 30

implementation, an appropriate lexical analyser is defined. The keyword glue corresponds to
the concatenation of words.

tre : TraExp =
num | wor | (TraExp + TraExp) | (TraExp / TraExp) |
sum (TraExp) | max (TraExp) |
…

tex :TypExp =
 boolean | number | word |

 Identifier | list-type TypExp ee | array-type TypExp ee |

 record-type Identifier as TypExp ee |
…

In the syntax of type expressions number and word denote themselves, i.e. the names of sim-
ple types.

4.8 The colloquial syntax of expressions
As was already explained, colloquial syntax includes all concrete syntax which means that the
use of colloquialisms is optional. On the algebraic level, each colloquialism is a new construc-
tor, which makes the algebra of colloquial syntax not similar to the algebra of concrete syntax.
Below three examples of colloquialisms described informally:

1. x or y or z means (x or (y or z)) ,

2. x + y + z + x*y means (x + y) + z) + (x*z)

3. array [x, x+y, 3*y] means
add-to-arr

add-to-arr
array x ee

new x+y ee

new 3*y ee

5 The imperative layer of the language
Expressions of all types belong to an applicative layer of Lingua. Their denotations use states
as arguments but neither create them nor change. The latter tasks are performed by instructions,
variable declaration, procedure- and function declarations and by type definitions. All of them
belong to an imperative layer of the language.

5.1 Some auxiliary concepts
Two new metapredicates are necessary to define the semantics of the imperative layer of our
language.

Andrzej Blikle, An experiment with denotational semantics 31

The metapredicate

is-error : State ⟼ {tt, ff}
returns tt whenever a state carries an error.

We say that body bod-1 is coherent with bod-2, in symbols
bod-1 coherent bod-2

whenever:

1. bod-1 = bod-2 or
2. they are record bodies, and one of them results from the other by adding or by removing

an attribute.
We also introduce an operator of inserting an error into a state:

◄ : State ⟼ State
(env, (vat, err)) ◄ error = (env, (vat, error))

5.2 Instructions
Instructions change states, and therefore instruction denotations are partial functions from states
to states:

ind : InsDen = State → State
The partiality results from the fact that the execution of an instruction may be infinite (an in-
struction may loop). The semantics of instructions is a function

Sin : Instruction ⟼ InsDen
Contrary to expression denotations which may generate an error, instruction denotations write
an error into the error register of a state. The denotations of the majority of instructions are
transparent relative to error-carrying states, i.e., they do not change such a state but only pass
it to the subsequent parts of the program. However, an error may also cause an error-handling
action (see Sec.6.1.8 of [16][16]).

The basic instruction is, of course, an assignment of a value to a variable identifier. The
syntactic scheme of an assignment is:
ide := dae

and the corresponding semantic clause is the following:

Sin.[ide := dae].sta =

is-error.sta sta
let

((tye, pre), (vat, ‘OK’)) = sta
 vat.ide = ? sta ◄ ‘identifier-not-declared’

 Sde.[dae].sta = ? ? (an infinite execution)

 Sde.[dae].sta : Error sta ◄ Sde.[dae].sta

let

Andrzej Blikle, An experiment with denotational semantics 32

((dat-f, bod-f), tra) = vat.ide (f – former)

(dat-n, bod-n) = Sde.[dae].sta (n – new)

 com = tra.(dat-n, bod-n)
 com : Error sta ◄ com
 not bod-n coherent bod-f sta ◄ ‘no-coherence’

not com : BooComposite sta ◄ ‘a-yoke-expected’
com = (ff, (‘Boolean’) sta ◄ ‘yoke-not-satisfied’
let

val-n = ((dat-n, bod-n), tra)
true ((tye, pre), (vat[ide/val-n], ‘OK’))

The denotation of an assignment changes an input state into an output state in nine steps:

1. If an input state carries an error, then this state becomes the output state.
2. Otherwise, if the identifier ide has not been declared, i.e., if no value or a pseudo value

has been assigned to it in the valuation val, then an error message is loaded to the error
register.

3. Otherwise, if an attempt to evaluate the data expression leads to an infinite execution,
then (of course) the executions of the instruction is infinite as well.

4. Otherwise, if the expression evaluates to an error, then this error is loaded to the error
register of the state.

5. Otherwise, it the transit applied to the new composite returns an error, then this error is
loaded to the error register.

6. Otherwise, if the composite computed from the expression has a body non-coherent
with the body of the identifier’s type, then an error is loaded to the error register.

7. Otherwise, if the composite computed by the transit is not Boolean, i.e. if the transit was
not a yoke, then an error is loaded to the error register.

8. Otherwise, if the yoke is not satisfied, then an error message is loaded to the error reg-
ister.

9. Otherwise, the new value is the new composite and the current (i.e. not changed) yoke,
and this new value is assigned to the identifier ide.

Notice that as a consequence of the claim 6. together with the definition of the coherence of
bodies (Sec.5.1) an assignment may change the body of a value assigned to a variable only if
this body is a record, and only by adding or by removing an attribute to/from that record.

The remaining instructions belong to one of the following seven categories where the first
four are atomic instructions, and the other three are structural instructions, i.e., instructions
composed of other instructions and expressions:

1. the replacement of a yoke assigned to a variable by another one
yoke ide := tre,

Andrzej Blikle, An experiment with denotational semantics 33

2. the empty instruction
skip,

3. the call of an imperative procedure
call ide (ref apar-r val apar-v)
where apar-r and apar-v are lists (maybe empty) of identifiers called respectively
actual reference-parameters and actual value-parameters,

4. the activation of an error-handling
if dae then ins fi,

5. the conditional composition of instructions
if dae then ins-1 else ins-2 fi,

6. the loop
while dae do ins od,

7. the sequence of instructions
ins-1 ; ins-2.

In the yoke-replacement instruction, the new value of the identifier ide gets the old composite
but a new transfer. This transfer must be satisfied with the current composite20.

The empty instruction skip is needed to make functional-procedure declarations suffi-
ciently universal; this will be seen in Sec.5.4.

The discussion of procedures is postponed to Sec.5.4
The error handling is activated if the current state carries an error, i.e. a word, that is equal

to the word that the data-expression dae evaluates to. If this happens, the “internal” instruction
ins is executed for a state that results from the initial state where the current error has been
replaced by ‘OK’21.

The semantics of the three remaining categories of instruction is usual with the exception
that in the last two cases an expression may generate an error message. In such a case that error
is stored in the error register of the state.

5.3 Variable declarations and type definitions
Variable-declaration denotations are total functions that map states into states:

 vdd : VarDecDen = State ⟼ State
assigning types to identifiers and leaving their data undefined, i.e. assigning pairs of the form
(Ω, typ). The syntactic scheme of a single declaration is of the form:
let ide be tex tel

Variable declarations are similar to assignments with the difference that for a declaration an
error ‘identifier-not-free’ is signalized whenever the identifier ide is bound in the input state.
It means that a variable may be declared in a program only once. During program execution the
value assigned to a variable may be changed only by changing:

• the composite of the value by an assignment instruction,

20 This instruction has been introduced mainly for the sake of SQL tables discussed in [16].
21 For details see Sec.6.1.8 of [16].

Andrzej Blikle, An experiment with denotational semantics 34

• the yoke of the value by a yoke-replacement.
Type definitions are of the form
 set ide as tex tes

and their denotations are similar to those of variable declarations, i.e.

tdd : TypDefDen = State ⟼ State
with the difference that instead of assigning a pseudovalue to a variable identifier in a valuation
they assign a type to a type-constant identifier in a type environment.

An identifier that is bound to a type in a state is called a type constant. Notice that “a con-
stant” rather than “a variable” since a type once assigned to an identifier, cannot be changed in
the future (an engineering decision).

Similarly as in the case of assignments, also type definitions, and variable declarations may
be combined sequentially using a semicolon constructor.

5.4 Procedures
Procedures in Lingua may be imperative or functional. The former are functions that take two
lists of actual parameters ― value parameters and reference parameters ― and return partial
functions on stores22. Functional procedures take only value parameters and return partial func-
tions from states to composites or errors:

ipr : ImpPro = ActPar x ActPar ⟼ Store → Store

fpr : FunPro = ActPar ⟼ State → (Composite | Error)
In these equations, ActPar is a domain of actual-parameter lists defined by the domain equa-
tion:

apa : ActPar = () | Identifier | ActPar x ActPar
As we see, actual-parameter lists are finite (maybe empty) sequences of identifiers. In turn,
formal-parameter lists that appear in procedure declarations are finite (maybe empty) sequences
of pairs consisting of an identifier and a type-expression denotations:

fpa : ForPar = () | Identifier x TypExpDen | ForPar x ForPar
Returning to procedures, notice that we do not talk here about “procedure denotations” but
about “procedures” as such since they are purely denotational concepts. In other words, they do
not have syntactic counterparts. At the level of syntax, we have only procedure declarations
and procedure calls which, of course, have their denotations.

A syntactic scheme of an imperative-procedure declaration is of the following form (the
carriage returns are of course syntactically irrelevant):

proc ide (ref fpar-r val fpar-v)

pro

end proc

22 The fact that procedures transform stores rather than states is a technique (introduced in [17]) that
allows to define recursion in avoiding the selfapplication of procedures, i.e. a situations where a proce-
dure takes itself as an argument. Of course, procedure calls are instructions and therefore they trans-
form states into states.

Andrzej Blikle, An experiment with denotational semantics 35

where pro is a program (see later) and fpar-r and fpar-v are the lists of respectively
formal reference-parameters and formal value-parameters. A syntactic example of a list of for-
mal parameters may be as follows:
(val age, weight as number, name as word,

 ref patient as patient-record)

Expressions different from single-identifier-expressions are not allowed as value parameters
since such a solution would complicate the model as well as program-construction rules (an
engineering decision).

If we want to declare a group of mutually recursive procedures, we use a multiprocedure
declaration of the form:

begin multiproc

ipd-1;

ipd-2;

…

ipd-n

end multiproc

where the ipd’s are imperative-procedure declarations. Intuitively this means that these pro-
cedure declarations have to be elaborated (compiled) “as a whole”, rather than one after another
(details in Sec.7.4 of [16]).

The syntactic scheme of a functional-procedure declaration is of the form :
fun ide (fpar)

pro

return dae as tex

A call of a functional procedure declared in this way first executes the program pro and then
evaluates the data expression dae in the output state of the program. If the composite generated
by that expression is of the type defined by the type expression tex, then this composite be-
comes the result of the call of the function. Otherwise, an error is signalized.

In particular, the program in a functional-procedure declaration may be the trivial instruction
skip ― which “does nothing” ― and the exporting expression may be a single identifier.

The (concrete) syntactic schemes of an imperative-procedure call and a functional-procedure
call are respectively:
call ide (ref apar-r val apar-v) ― imperative-procedure call

ide (apar-v) ― functional-procedure call

Notice that the second call has no reference parameters since functional procedures do not have
any side-effects ― they do not modify a state (an engineering decision).

All types and procedures defined in the hosting program before (see Sec.5.4) the declaration
of a procedure are visible in the body of this procedure, and therefore they do not need to be
passed as parameters (an engineering decision).

In the version of Lingua described in the present paper procedures cannot take other proce-
dures as parameters. However, it is shown in Sec. 7.6 of [16] how to construct a hierarchy of

Andrzej Blikle, An experiment with denotational semantics 36

procedures that can take procedures of lower rank as parameters. This construction protects
procedures from taking themselves as parameters which would lead to non-denotational models
(a mathematical decision).

5.5 The execution of a procedure call
In the descriptions of procedure mechanisms, we use some concepts having to do with the fact
that procedures are created when they are declared and are executed when they are called. In
respect to that, we shall talk about states (and their components) of a declaration-time and of a
call-time respectively23. Traditionally by a procedure body, we mean the program that is exe-
cuted when a procedure is called.

As has been already announced, there are no global variables in procedures (an engineering
decision)24. The intention is that the head of a procedure-call describes explicitly and com-
pletely the communication mechanisms between a procedure and the hosting program. That
solution may seem restrictive but ― in my opinion ― guarantees a better understanding of
program functionality by programmers and definitely simplifies program-construction rulers.

Execution of a procedure call may be intuitively split into four stages illustrated in Fig. 5.5-1.
(formal definitions in Sec.7.3 of [16]).

Fig. 5.5-1 The execution of a procedure call

1. The inspection of an initial global state ― that state consists of:

a. an initial global environment env-ig,

b. an initial global store sto-ig = (vat-ig, err)
If err ≠ ‘OK’, then the initial global state is returned by procedure call and therefore
becomes the terminal global state. In the opposite case, an initial local state is cre-
ated.

23 These ideas, similarly to a few others, have been borrowed from M. Gordon [22]
24 If we would like to introduced global variables, we should define the local store of a procedure call as
a modification of its global store.

Andrzej Blikle, An experiment with denotational semantics 37

2. The creation of an initial local state ― that state consists of:

a. initial local environment env-il created from the declaration-time environment
by nesting in it the called procedure; this nesting is necessary to enable recursive
calls,

b. initial local valuation vat-il covering only formal parameters with assigned val-
ues of corresponding actual parameters; to get the latter values, we refer to initial
global valuation val-ig.

3. The transformation of the local initial state by executing the procedure body. If this
execution terminates, then the local terminal state consists of:

a. terminal local environment env-tl,
b. terminal local store sto-tl = (val-tl, err-tl).
If err-tl ≠ ‘OK’, then a global terminal state is created from the initial global-state by
loading to it err-tl. Notice that in this case, the terminal local-environment and the
terminal local store are “abandoned”. Otherwise, the terminal global state is created.

4. The creation of the terminal global state ― that state consists of:

a. initial global environment env-ig; notice that terminal local environment env-tl
is “abandoned”,

b. terminal global store sto-tg created from initial global store sto-ig by ”return-
ing” to it the values of formal referential parameters (stored in sto-tl) and as-
signing them to the corresponding actual referential parameters.

Notice that initial local environment “inherits” all types and procedures from the declaration-
time environment. Procedure body may use its own local environment types and procedures,
but after the completion of the call, they cease to exist, since the hosting program returns to the
initial global environment.

It is to be underlined that the procedure body may access only that part of the environment
which was created before the procedure declaration.

Of a similar character is the local valuation that is created only in procedure execution-time,
although in this case the values or reference-parameters stored in it are eventually returned to
the terminal global valuation.

Summarizing the visibility rules concerning procedure call:
1. the only variables visible in procedure-body are formal parameters plus variables local

to the body (declared in it),
2. the only types and procedures visible in procedure-body are declaration-time types and

procedures plus locally declared ones,
3. variables, types and procedures declared in the procedure-body are not visible outside of

procedure call.
All these choices are not mathematical necessities but pragmatic engineering decisions dictated
by the intention of making our model relatively simple which should contribute to the simplicity
of program-construction rules and to a better understanding of programs by language-users.

Procedures in Lingua may call themselves recursively either directly or indirectly. At the
level of semantic clauses, this leads to recursive definitions of the denotations of procedure
declarations. For formal definitions see Sec.7.3.2 in [16][16].

Andrzej Blikle, An experiment with denotational semantics 38

5.6 Preambles and programs
Each program in Lingua consists of a preamble followed by an instruction. The syntactic
scheme of a program is therefore of the form:

begin-program pam ; ins end-program

where pam is a preamble.

Preambles are sequential compositions of type-constant definitions, data-variable declara-
tions and procedure declarations. Their syntax is defined by the following grammatical clause:

pam : Preamble =
ImpProDec | MultiProDec | FunProDec | TypDef | VarDec | skip |

Preamble ; Preamble
Similarly to instructions also preambles contain skip which represent an identity state-to-state
function. The semantics of programs and preambles are the following functions:

Spr : Program ⟼ ProDen

Spre : Preamble ⟼ PreDen
which are defined by structural induction:

Spr.[pam ; ins] = Spre.[pam] ● Sin.[ins]

and

Spre.[ipd] = Sipd.[ipd]

Spre.[mpd] = Smpd.[mpd]

…
Spre.[pam-1 ; pam-2] = Spre.[pam-1] ● Spre.[pam-2]

Intuitively the clauses for preambles are read as follows:

• the semantics of preambles applied to imperative-procedure declarations coincide with
the semantics of such declarations,

• the semantics of preambles applied to multi-procedure declarations coincide with the
semantics of such declarations,

• …

• the denotation of a sequential composition of preambles is a sequential composition of
their denotations.

Programs with the trivial preamble skip — if executed “without a context” — will always
generate an error, unless they (the programs) are the skip themselves. Such programs are al-
lowed because they may appear in procedure declarations as the bodies of procedures without
locally declared objects. In turn, programs with trivial preambles and instructions are allowed
in the declarations of functional procedures25.

25 Both these solutions, although in a slightly different form, have been suggested to me by Andrzej
Tarlecki.

Andrzej Blikle, An experiment with denotational semantics 39

5.7 The carriers of our algebra of denotations
These carriers are listed below. For each of them there is a corresponding carrier in the algebra
of syntax.

ide : Identifier (identifiers)

ded : DatExpDen = State → CompositeE (data-expression denotations)
tra : TraExpDen = Transfer (transfer-expression denotations)
ted : TypExpDen = State ⟼ TypeE (type-expression denotations)
vdd : VarDecDen = State ⟼ State (variable-declaration denotations)

tdd : TypDefDen = State ⟼ State (type-constant denotations)

ind : InsDen = State → State (instruction denotations)

fpa : ForPar = (Identifier x TypExpDen)c* (formal parameters)
apa : ActPar = Identifierc* (actual parameters)

ipc : IprComponents = Identifier x ForPar x ForPar x ProDen
 (imperative-procedure components)

cmp : MprComponents = IprComponentsc+ (multiprocedure components)
ffc : FprComponents = Identifier x ForPar x ProDen x DatExpDen x TypExpDen

 (functional procedure components)

idd : IprDecDen = State ⟼ State
 (imperative-procedure-declarations denotations)

mpd : MulProDecDen = State ⟼ State (multiprocedure-declarations denotations)

fdd : FprDecDen = State ⟼ State (function-declaration denotations)

pde : PreDen = State → State (preamble denotations)

prd : ProDen = State → State (program denotations)

6 Lingua-SQL

6.1 General assumptions about the model
The denotational model of Lingua-SQL is built as an extension of the model of Lingua by
adding:

1. new data domains corresponding of databases, tables, rows, and specific SQL-data,
2. new constructors defined on these domains.

6.2 Data, bodies and composites
So far values in Lingua consisted of a composite and a transfer. This principle is kept in Lin-
gua-SQL for values carrying simple data, rows and tables but in the case of databases, values
are records of tables supplemented by graphs of subordination relations (Sec. 6.6).

Andrzej Blikle, An experiment with denotational semantics 40

In Lingua-SQL lists, records and arrays do not carry rows, tables and databases and table
fields do not contain lists, records and arrays. On the other hand, the extended repertoire of
simple SQL values is available for the constructors of lists, records and arrays.

Simple data which are new in Lingua-SQL are associated with time, i.e. with calendars and
clocks:

dat : Date = Year x Month x Day
tim : Time = Hour x Minute x Second
dti : DateTime = Date x Time

where Year, Month, Day, Hour, Minute and Second are defined as finite sets of numbers in
an obvious way. Since simple data play a special role in SQL, we need a domain of such data:

sda : SimData = Boolean | Number | Word | Date | Time | DateTime | {ϴ}
All former constructors with simple data as arguments ― e.g. that add a new attribute to a
record ― are extended in an obvious way to the new domain.

To include rows and tables with empty fields in our model, we introduce an empty data ϴ26.
This data will never appear as a value of an expression and will never be assigned to a variable.

With the extended set of simple data, we can extend the set of corresponding operations, e.g.
by allowing to add a number to a date. I do not define such operations explicitly assuming that
their class is a parameter of our model.

The subcategories of numbers such as INTEGER, SMALLINT, BIGINT, DECIMAL(p, s),
or of words CHARACTER(n), CHARACTER VARYING(n), BLOB, will correspond to
yokes rather than to types.

As was already announced we introduce two new sorts of structural data:

row : Row = Identifier ⟹ SimData
tab : Table = Rowc*

At the level of domain equations, tables may contain rows of different length and different
attributes. However, such tables will not be reachable in the algebra of composites.

Data bases do not appear at the level of data. They are defined only at the level of values
(Sec.6.6).

Similarly, as in Lingua, all SQL data have corresponding bodies. The bodies of new simple
data are defined as one-element tuples of words, hence:

sbo : SimBody = {(‘Boolean’), (“number’), (‘word’), (‘date’), (‘time’), (date-time’)}
The bodies of new structural data are defined by the equations:

bod : RowBody = {‘Rq’} x RowRec
ror : RowRec = Identifier ⟹ SimBody
bod : TabBody = {‘Tq’} x Row x RowBody

As one can guess from these definitions, the composites of rows in a table will have a common
body. The row contained in a table body carries the information about default data for columns.

26 Notice that ϴ, which is assignable to fields of rows and tables, is different from Ω which is assigned
to a variable at the declaration-time.

Andrzej Blikle, An experiment with denotational semantics 41

Its list of attributes must coincide with the list of the attributes of the corresponding row body.
This property will be insured by table-body constructors.

The domain BodyE is extended by new simple bodies and the bodies of rows and tables.

The function CLAN-Bo from Lingua is extended in an obvious way on row bodies. In the
case of table bodies, we assume that each row of a table must have an appropriate record struc-
ture and that in each field with a non-empty default value there is a non-empty value. Of course,
it does not need to be a default value. The latter are used when adding to a table a new row or
a new column.

We assume that the empty table ― a table with an empty tuple of rows ― belongs to the
clan of every table body.

The domain CompositeE is appropriately extended by composites associated with new sim-
ple data, row data, and table data. Additionally, we introduce an auxiliary domain of simple
composites:

com : SimCom = {(dat, bod) | (dat, bod) : CompositeE and bod : SimBody}
and we also assume that (ϴ, bod) is a composite for every simple bod.

6.3 The subordination of tables
Subordination relations describe the binary relationships that can hold between tables. Let then
A and B be tables and let ide be an attribute that appears in both of them. Let A.ide and B.ide
be the corresponding columns in these tables.

We say that A is subordinate to B at ide or that A is a child and B is a parent, that we write
as

A sub[ide] B
if the following three conditions are satisfied:

1. an ide-column appears in both tables; the identifier ide is called the subordination in-
dicator,

2. the column B.ide is repetition-free,

3. the column A.ide contains only the data that appear in B.ide
The points 2. and 3. together mean that each row of A unambiguously points to a row in B. By
a subordination graph we mean any finite set of triples of identifiers:

sgr : SubGra = Sub.(Identifier x Identifier x Identifier)27
Each tuple (ide-c, ide, ide-p) in sgr is called an edge of the subordination graph, where ide-c
(child) and ide-p (parent) play the role of graph nodes, and ide is a label of the edge. In the
context of a given state, each edge expresses the fact that a subordination relation holds between
the tables named ide-c and ide-p where ide is the subordination indicator.

About the subordination graphs, we assume only that ide-c ≠ ide-p, although such graphs
may contain cycles. Notice also that there may be many edges starting in one node (one child
may have many parents), and many edges may end in one node (many children may have a
common parent).

27 Notice that since the set Identifier is finite, each subordination graph is finite as well.

Andrzej Blikle, An experiment with denotational semantics 42

6.4 Transfers
Types ― as we understand them in this paper ― are mentioned in SQL-manuals only in the
context of simple data and even in that case in a very unclear and incomplete way. The types
of tables are implicit in table declarations, and the types of rows, columns and databases are
totally absent. In table declarations, the descriptions of bodies are mixed with the description
of yokes, and with database instructions, and are called integrity constraints.

Unfortunately, in none of the known to me SQL manuals (their list is given in the preamble
to Sec.11 of [16][16]), I have found a complete description of integrity constraints. Although
all of them have a certain common part, besides that part, each manual offers different ideas. In
this situation, I decided to construct such a model of SQL types that would cover a “sufficiently
large” spectrum of types that appear in SQL applications.

Since in Lingua-SQL there are no database composites, there will not be database transfers
either. The properties of databases will be described by:

• the yokes referring to their tables,

• subordination graphs which are only seen at the level of values.
We assume that in Lingua-SQL we have all so-far-defined transfer-constructors, and in partic-
ular ― Boolean constructors. New constructors will generate transfers on new simple compo-
sites ― these are regard as the parameters of our model ― plus row- and table-transfers.

The row transfers are analogous to record transfers of Lingua. Table transfers split into two
classes.

The first contains quantified table-yokes which describe table properties by row yokes that
should be satisfied for all rows of a table.

Notice that although quantified table-yokes express properties of table-rows explicitly, they
express implicitly ― due to quantifiers ― some properties of columns, such as, e.g., that each
element of a column is a number. This technique does not allow, however, to express properties
of columns regarded as a whole, e.g. that a column is ordered or that it does not contain repeti-
tions. To express such properties, we need special column-dedicated yoke constructors. Here is
one example of such a constructor:

no-repetitions-tb : Identifier ⟼ Transfer
no-repetitions-tb.ide.com =
 com : Error com
 sort.com ≠ ‘Tq’ ‘table-expected’

let
 col = Cc[get-co-from-tb].(ide, com)

col : Error col
true no-repetitions.col

We create a tuple of composites col which represents the column of the attribute ide, and then
we check if this tuple satisfies a universal predicate no-repetitions. The created column does
not contain the element that corresponds to the row of default values.

Andrzej Blikle, An experiment with denotational semantics 43

Since we have Boolean constructors among the constructors of yokes, we can use them to
construct yokes that express properties of several columns of a table and all of its rows. Notice
that contrary to the SQL standard the properties of columns and rows may be combined by
arbitrary Boolean constructor rather than by conjunction only28.

6.5 Types
The algebra of types of Lingua-SQL contains four carriers:

• Identifier

• Transfer

• CompositeE

• TypeE
and besides the constructors already defined for Lingua contain three groups of new construc-
tors:

1. new transfer constructors (Sec.6.4),
2. selected constructors of row composites needed to construct the rows of default values,
3. three type constructors: of creating a one-attribute row, of adding an attribute to a row

and of creating table type.
Row types are created similarly as record types with the difference that now the added type
must be simple.

6.6 Database values
Database values are defined as pairs consisting of an (intuitively understood) record of table
values and a subordination graph (Sec.6.3). About databases we assume additionally the fol-
lowing:

• to make a database accessible in a program, its tables must be assigned to variable iden-
tifiers in the current valuation,

• in every state its valuation carries tables of only one database; this database is called the
active database.

To describe this mechanism new notions are necessary.
According to our assumptions we expand the current domain of simple values and we intro-

duce the domains of row values and table values:

RowVal = {(com, tra) | sort.com = ‘Rq’ and tra.com = (tt, (‘Boolean’))}
TabVal = {(com, tra) | sort.com = ‘Tq’ and tra.com = (tt, (‘Boolean’))}

By a database record we mean a mapping that maps identifiers into table values:

dbr : DatBasRec = Identifier ⟹ TabVal
Of course, database records are not records in the sense of Sec.4.1, but only in a set-theoretic
sense.

28 To say the truth I am not sure if such a generalisation has a practical value.

Andrzej Blikle, An experiment with denotational semantics 44

We say that a database record dbr satisfies the subordination relation identified by a subor-
dination graph sgr, in symbols

dbr satisfies sgr,
if for every edge (ide-c, ide, ide-p) of the graph, the tables assigned to ide-c and ide-p are
defined, i.e.

(com-c, tra-c) = dbr.ide-c
(com-p, tra-p) = dbr.ide-p

and the subordination relation holds, i.e.

com-c sub[ide] com-p
By a database value we mean a pair consisting of a database record and a subordination graph
that describes the subordination relations satisfied by that record:

dbv : DbaVal = {(dbr, sgr) | dbr satisfies sgr}
We may say that for database values, the role of a yoke is played by the predicate satisfies.
Notice, however, that since a database record caries table values, the tables of the database
satisfy their own yokes.

6.7 States
Similarly as in Lingua, states in Lingua-SQL bind values with variables and types with type
constants. The general definitions of types and values remain as in Sec.4.2 except for database
values (Sec. 6.6). Consequently, the values in Lingua-SQL, i.e., objects which may be assigned
to variable identifiers are all the values of Lingua, and additionally the values that carry:

1. simple SQL data,
2. rows,
3. tables,
4. databases.

Of course, database values are not values in the former sense of the word since they are not
composed of a data and a type. The type of a database is implicit in the types of its tables and
in the subordination graph.

In every state several data bases may be stored, i.e. assigned to identifiers, but only one base
may be active at a time, i.e. the tables of only one base may be assigned to identifiers in valua-
tions.

For states I assume the existence of four system identifiers:

sb-graph ― that binds the subordination graph of the active base in the environment,
copies ― that binds a finite sets of table names (identifiers) in the valuation,

monitor ― that binds one table in the valuations, (the table displayed on a monitor)
check ― that binds words ‘yes’ and ‘no’ in valuations.

Their role will be explained later. So far we assume only that they cannot be used as identifiers
of variables, of type constants and of procedures. The identifier check is called the security
flag.

Andrzej Blikle, An experiment with denotational semantics 45

The signature of the algebra of denotations of Lingua-SQL is an extension of the signature
of Lingua (Sec.5.7) by new constructors. The carriers change due to new SQL-values and SQL-
types.

6.8 Denotations and their constructors
The subalgebra of expression denotations of all types is analogous as in Lingua.

At the level of state-to-state functions we have a new domain of transactions. Transactions,
similarly to instructions, are state transformations but contrary to the former they are total func-
tions since they do not contain loops and procedure calls. Moreover, they do not create new
tables but only modify the existing ones. Their domain is, therefore, the following:

trd : TrnDen = State ⟼ State
Transactions are regarded as a separate carrier of our the algebra of denotations to avoid the use
of arbitrary table instructions in the contexts of transactions.

The largest group of transactions are table modifications which in a traditional syntax could
have the form:
ide := table-expression(ide)

where on both sides we have the same table named ide. Transactions include the mechanisms
of creating and recovering security copies of databases.

The carrier of instruction denotations is enriched with new constructors of specific SQL
instructions of three categories;

1. row assignments,
2. table assignments,
3. database instructions.

All constructors of Lingua are still available and apply to the extended carrier of instruction
denotations. This rule concerns, in particular, the constructor of transfer replacement and the
constructors of structural instruction, i.e., sequential composition, branching and loop. The con-
structors of procedure declaration and procedure call remain unchanged as well, although now
they are defined on extended domains.

A particular role in SQL plays a large group of table assignments where we distinguish two
categories:

1. table-modification instruction where on both sides of the assignment we have the name
of the same table; this group of instructions comprise the mechanisms known as CAS-
CADE and RESTRICT,

2. table-creation instruction where on the left-hand side of the instruction we may have a
different table name (of the table that is being created) than on the right-hand side.

From a mathematical perspective the first category may be regarded as a particular case of the
second, but denotationally they correspond to two different constructors of the algebra of de-
notations hence also to different constructors of the algebra of syntax.

Independently of the described categorisation, table assignments are split into two further
categories according to two ways of using subordination constraints both described in Sec. 11.5
of [16][16]):

Andrzej Blikle, An experiment with denotational semantics 46

1. conformist instructions where an execution terminates with an error message whenever
it would lead to a violation of subordination constraints; this category corresponds to
the option RESTRICT,

2. correcting instructions which in the described situation introduce such changes into a
database that guarantee the protection of subordination constraints; this category corre-
sponds to the option CASCADE.

Queries are similar to simple instructions with the difference that they always create a new table
assigned to the system-identifier monitor. Consequently, we apply simplified assignments as-
sign-mo that never violates any constraints since the transfer of the new value is TT.

Cursors are mechanisms used to get row-by-row from tables. In our model that can be easily
defined, e.g. by adding a column to a table that enumerates its rows.

Views are essentially procedures that call table instructions. They may be introduced to our
model either as predefined instructions or by providing programming mechanisms of proce-
dures that operate on tables.

Regarding data base instructions I assume that in Lingua-SQL an initial valuation of pro-
gram execution may carry some variables assigned to database values. I assume additionally
that in every initial state of program execution, the system identifiers are bound to the following
default values:

tye.sb-graph = Ø
vat.copies = Ø,

vat.monitor = Ω (interpreted as no data to be displayed)
vat.check = ‘yes’

With these assumptions each database program in Lingua-SQL that operates on tables either
has to create its own tables ― and a database thereof ― or to activate an already existing data-
base. In Lingua-SQL we have therefore only two database instructions that operate on tables
― activate and archive ― and two that operate on subordination graphs, which add or remove
an edge of a graph.

6.9 An example of a colloquial syntax
The colloquial syntax of Lingua-SQL should be as close as possible to SQL standard. Below
just one example of restoring a standard table-variable declaration ― which in Lingua-SQL
belongs to colloquial syntax ― into its corresponding concrete-syntax form.
create table Employees with

 Name Varchar(20) NOT NULL,

 Position Varchar(9),

 Salary Number(5) DEFAULT 0,

 Bonus Number(4) DEFAULT 0,

 Department_Id Number(3) REFERENCES Departments,

CHECK (Bonus < Salary)

ed

Andrzej Blikle, An experiment with denotational semantics 47

The restoring transformation would change this declaration into a sequence of a table-variable
declaration followed by a database instruction of retting a subordination dependency between
tables:

create table Employees as typ_exp ed ;

set reference of Employees et Department_Id to Departments ei

where typ_exp is a metavariable that represents a type expression:

table-type dat_exp with tra_exp ee

In this scheme the data expression dat_exp defines data that stand in the row of default data
which in fact means that it generates this row. In turn the transfer expression tra_exp describes
the properties of columns and rows. The table-variable declaration has then the form:

 create table Employees as

table-type dat_exp with tra_exp ee
ed

Unfolding the data expression by means of row-creation and row-expansion constructors and
unfolding the transfer expression with transfer-expression constructors we get the following
concrete version of our colloquial declaration:

create table Employees as (the beginning of the declaration)

 table-type (the beginning of type expression)

 expand-row (the beginning of data expression)
expand-row

expand-row

 expand-row

row Name val empty-word ee

by Position val empty-word ee

by Salary val 0 ee

by Bonus val 0 ee

 by Department_Id by empty-number ee (the end of data expression)

 with (the beginning of transfer expression yoke expression)
 all

varchar(20)(row.Name) and

not-null(row.Name) and

varchar(9)(row.Position) and

 number(5)(row.Salary) and

 number(4)(row.Bonus) and

 number(3)(row.Department_Id) and

Andrzej Blikle, An experiment with denotational semantics 48

row.Bonus < row.Salary

ee (the end of transfer expression (yoke expression)

ee (the end of type expression)
ed ; (the end of declaration)
set reference of Employees et Department_Id to Departments ei

Of course varchar(20), varchar(9),… are the names of appropriate predicates. Notice
that in this example one “syntax unite” from the colloquial level is transformed into a sequential
composition of a declaration with an instruction.

6.10 Remarks about a possible implementation of Lingua-SQL
Typical Application Programming Interfaces (API) for SQL have been created for program-
ming languages such as e.g. C, PHP, Perl, and Phyton. Each of these programming environ-
ments constitutes a programming language equipped with the mechanisms that allow to run
procedures of a certain existing database-engine. In the case of Lingua-SQL, such a situation
would not be acceptable. Our language must be based on a dedicated SQL-engine with a deno-
tational model, and in the future, maybe, with a dedicated implementation. Such an approach is
necessary, if we want to provide sound program-construction rules for Lingua-SQL.

7 What remains to be done
Even though [16] is already of a considerable size, the majority of subjects has been only
sketched. Below a preliminary list of subjects which could be developed further. This list is
certainly not complete.

7.1 The development of Lingua
1. An extension of Lingua to some “practical” language, say Lingua-α, where preliminary

programming experiments could be performed. Such a language should cover in partic-
ular:
1.1. The mechanisms of object programming which in [16] have been only sketched in

Sec.9.
1.2. Some more specific data types, e.g. trees that in the Polish version of [16] have been

sketched in Annex 1.
1.3. The enrichment of SQL mechanisms.
1.4. The elaboration of HTML scripts.

2. The development of tools for correct-programs’ development in Lingua-α:
2.1. The extension of the languages of conditions and thesis sketched in Sec.8 of [16].
2.2. Sound program-construction rules for the extended language.

3. A user manual for Lingua-α. This task could also contribute to a methodology of writ-
ing programmer’s manuals for languages with denotational semantics29.

29 Denotational models should provide an opportunity for the revision of current practices seen in the
manuals of programming languages. New practices should on one hand base on denotational models

Andrzej Blikle, An experiment with denotational semantics 49

4. A programmer’s environment for Lingua-α:
4.1. An interpreter or a compiler. To make this interpreter/compiler maximally inde-

pendent of possible errors in the language used to build it, some basic core could be
coded in such a language (e.g. in Python), and the remaining part may be written
using this basic core. This could also be the first experiment in using our language.

4.2. An editor of programs supporting the construction of correct programs with the use
of earlier developed program construction rules (see 2.2)

4.3. An adaptation of an existing theorem prover for proving metaconditions (the prop-
erties of conditions) described in Sec. 8.4.2 of [16] which is necessary for the use of
program-construction rules.

5. Preliminary experiments with programming in Lingua-α:
5.1. Microprograms due to their relatively small volume and a very critical correctness

issue.
5.2. Simple SQL applications due to the availability of tools.

This is, of course, only a preliminary sketch of a project which — in the case of realizations —
would probably be modified and further developed.

7.2 The development of a software environment for language
designers

Such an environment should consist of:
1. An editor of the definitions of denotations’ constructors.
2. A generator of the grammar of abstract syntax from such definitions.
3. An editor supporting language designers in developing concrete-syntax grammar from

abstract syntax grammars.
4. An editor/generator of a transformation restoring colloquial syntax to abstract syntax.
5. A generator of a parser from colloquial syntax to abstract syntax.
6. A generator of an interpreter of the language.

If such an environment is created before Lingua-α, it could be used in the creation of that
language.

7.3 Two basic research problems
Independently of the tasks mentioned above, two important research problems are worthy of
consideration.

but on the other ― do not assume that todays’ readers are acquainted with it. A manual should pro-
vide some basic knowledge and notation needed to understand the definition of a programming lan-
guage written in a new style. At the same time ― I strongly believe on that ― it should be written for
professional programmers rather than for amateurs. The role of a manual is not to teach the skills of
programming. Such textbooks are, of course, necessary, but they should tell the readers what the pro-
gramming is about rather than the technicalities of a concrete language. An experiment in writing a
user manual of Lingua is described in [15].

Andrzej Blikle, An experiment with denotational semantics 50

The first concerns the extension of our model by the mechanisms of concurrency. Fully de-
notational models of concurrence are not known today, although there are some attempts to
“semi-denotational” models of these mechanisms, as, e.g. in [2].

The second problem has not been probably tackled at all and concerns the construction of
semi-formal languages for the description of user-oriented specifications of programs. So far
all approaches to program correctness — including mine — concentrate on the compatibility
of program code with its formal specification. It does not exhaust the reliability problem in the
IT industry, because many problems are due to poor communication between a designer of a
system and its user. Most probably many area-oriented languages of specifications would be
needed.

8 References
Several works of Andrzej Blikle which are listed below are freely available from:
http://www.moznainaczej.com.pl/denotational-engineering/denotational-engineering-eng

[1] Ahrent Wolfgang, Beckert Bernhard, Bubel Richard, Hähnle Reiner; Schmitt Peter
H., Ulbrich Mattias (Eds.), Deductive Software Verification — The KeY Book; From
Theory to Practice, Lecture Notes in Computer Science 10001, Springer 2016

[2] Binsbergena L. Thomas van, Mosses Peter D., Sculthorped C. Neil, Executable
Component-Based Semantics, Preprint submitted to JLAMP, accepted 21 December
2018

[3] Bjørner Dines, Jones B. Clif, The Vienna development method: The metalanguage,
Prentice Hall International 1982

[4] Bjørner Dines, Oest O.N. (ed.), Towards a formal description of Ada, Lecture Notes
of Computer Science 98, Springer Verlag 1980

[5] Blikle Andrzej, Algorithmically definable functions. A contribution towards the se-
mantics of programming languages, Dissertationes Mathematicae, LXXXV, PWN,
Warszawa 1971

[6] Blikle Andrzej, Equational Languages, Information and Control, vol.21, no 2, 1972
[7] Blikle Andrzej, Toward Mathematical Structured Programming, Formal Descrip-

tion of Programming Concepts (Proc. IFIP Working Conf. St. Andrews, N.B Canada
1977, E.J Neuhold ed. pp. 183-2012, North Holland, Amsterdam 1978

[8] Blikle Andrzej, On Correct Program Development, Proc. 4th Int. Conf. on Software
Engineering, 1979 pp. 164-173

[9] Blikle Andrzej, On the Development of Correct Specified Programs, IEEE Trans-
actions on Software Engineering, SE-7 1981, pp. 519-527

[10] Blikle Andrzej, The Clean Termination of Iterative Programs, Acta Informatica,
16, 1981, pp. 199-217.

[11] Blikle Andrzej, MetaSoft Primer ― Towards a Metalanguage for Applied Denota-
tional Semantics, Lecture Notes in Computer Science, Springer Verlag 1987

[12] Blikle Andrzej, Denotational Engineering or from Denotations to Syntax, red. D.
Bjørner, C.B. Jones, M. Mac an Airchinnigh, E.J. Neuhold, VDM: A Formal Method
at Work, Lecture notes in Computer Science 252, Springer, Berlin 1987

http://www.moznainaczej.com.pl/denotational-engineering/denotational-engineering-eng

Andrzej Blikle, An experiment with denotational semantics 51

[13] Blikle Andrzej, Three-valued Predicates for Software Specification and Validation,
w tomie VDM’88, VDM: The Way Ahead, Proc. 2nd, VDM-Europe Symposium,
Dublin 1988, Lecture Notes of Computer Science, Springer Verlag 1988, pp. 243-
266

[14] Blikle Andrzej, Denotational Engineering, Science of Computer Programming 12
(1989), North Holland

[15] Blikle Andrzej, An experiment with a user manual based on a denotational seman-
tics, preprint, DOI: 10.13140/RG.2.2.23355.67366

[16] Blikle Andrzej, Chrząstowski-Wachtel Piotr, A Denotational Engineering of Pro-
gramming Languages ― to make software systems reliable and user manuals clear,
complete and unambiguous (a preprint), DOI: 10.13140/RG.2.2.27499.39201/3

[17] Blikle Andrzej, Tarlecki Andrzej, Naive denotational semantics, Information Pro-
cessing 83, R.E.A. Mason (ed.), Elsevier Science Publishers B.V. (North-Holland),
© IFIP 1983

[18] Branquart Paul, Luis Georges, Wodon Pierre, An Analytical Description of CHILL,
the CCITT High-Level Language, Lecture Notes in Computer Science vol. 128,
Springer-Verlag 1982

[19] Chomsky Noham, Context-free grammar and pushdown storage, MIT Research
Laboratory Electrical Quarterly Progress Reports 65, 1962

[20] Ginsburg Seymour, The mathematical theory of context-free languages, New York
1966

[21] Goguen, J.A., Thatcher J.W., Wagner E.G., Wright J.B., Initial algebra semantics
and continuous algebras, Journal of ACM 24 (1977)

[22] Gordon M.J.C., The Denotational Description of Programming Languages,
Springer Verlag, Berlin 1979

[23] Hoare C.A.R., An axiomatic basis for computer programming, Communications of
ACM, 12, 1969, pp. 576-583

[24] Kleene Steven Cole, Introduction to Metamathematics, North-Holland 1952; later
republished in the years 1957, 59, 62, 64, 67, 71

[25] McCarthy John, A basis for a mathematical theory of computation, Western Joint
Computer Conference, May 1961 later published in Computer Programming and
Formal Systems (pod redakcją P. Brawffort i D. Hirschberg), North Holland 1967

[26] Naur Peter (ed.), Report on the Algorithmic Language ALGOL60, Communica-
tions of the Association for Computing Machinery Vol. 3, No.5, May 1960

[27] Stoy, J.E., Denotational Semantics: The Scott-Strachey Approach to Programming
Language Theory, MIT Press, Cambridge, MA 1977

[28] Scott D., Strachey Ch., Towards a mathematical semantics of computer languages,
Technical Monograph PRG-6, Oxford University 1971.

[29] Turing Alan, On checking a large routine, Report of a Conference on High-Speed
Calculating Machines, University Mathematical Laboratory, Cambridge 1949, pp.
67-69.

Andrzej Blikle, An experiment with denotational semantics 52

9 Index

abstract error .. 15
abstract semantics 13
actual-parameter list 35
algebra of expression denotations 26
algebra of expressions 26
alphabet ... 14
array ... 22
assignment ... 32
attribute of a record 22
body of a data .. 23
Boolean composite 24
carrier of an algebra 12
child ... 42
clan of a body .. 24
clan of a type ... 24
coherent bodies .. 31
colloquial syntax 20
composite .. 24
concatenation of languages 14
concatenation of words 14
concrete syntax .. 13
concretization homomorphism 19
constructor of an algebra 12
cursor ... 47
data .. 22
data expression .. 26
database record .. 44
domain ... 9
domain equation 22
eager evaluation 17
empty data ... 41
equational grammar 14
formal language 14
functional procedure 35
Goguen Joe .. 8
identifier .. 22
imperative procedure 35
instruction .. 32
lazy evaluation ... 17
list .. 22
many-sorted algebra 11
mapping ... 10
multiprocedure declaration 36
parent ... 42

partial function .. 10
preamble ... 38
procedure body 37
procedure call .. 36
procedure declaration 35
program ... 38
pseudo-data ... 25
pseudo-value ... 25
quantified table-yoke 43
query ... 47
reachable algebra 12
reachable subalgebra 12
reachable subset of a carrier 12
record .. 22
reference parameter 35
restoring transformation 20
semantic clause 13
sequential composition of functions 11
signature of an algebra 12
similar algebras 13
simple data .. 22
state ... 25
structural data .. 22
subordination graph 42
subordination indicator 42
subordination of tables 42
syntactic scheme 27
total function ... 10
transaction ... 46
transfer .. 24
transfer expression 28
transparent for errors 16
type ... 24
type expression 29
type-definition denotation 34
value .. 25
value parameter 35
variable-declaration denotation 34
view ... 47
Wagner Eric .. 8
word .. 14
Wright Jessie ... 8
yoke ... 24

	1 Introduction
	1.1 Reversing the traditional order of things
	1.2 What is in the paper
	1.3 What this paper is not offering
	1.4 What is new in my approach

	2 Mathematical preliminaries
	2.1 Notational conventions
	2.2 Many-sorted algebras
	2.3 Equational grammars
	2.4 Abstract errors
	2.5 Three-valued propositional calculus

	3 General remarks about denotational models
	3.1 Why do we need denotational models?
	3.2 Five steps to a denotational model
	3.3 Two layers of a programming language

	4 The applicative layer of Lingua
	4.1 The data
	4.2 Composites, transfers, yokes, types and values
	4.3 Expressions in general
	4.4 Data expressions
	4.5 Transfer expressions
	4.6 Type expressions
	4.7 The concrete syntax of expressions
	4.8 The colloquial syntax of expressions

	5 The imperative layer of the language
	5.1 Some auxiliary concepts
	5.2 Instructions
	5.3 Variable declarations and type definitions
	5.4 Procedures
	5.5 The execution of a procedure call
	5.6 Preambles and programs
	5.7 The carriers of our algebra of denotations

	6 Lingua-SQL
	6.1 General assumptions about the model
	6.2 Data, bodies and composites
	6.3 The subordination of tables
	6.4 Transfers
	6.5 Types
	6.6 Database values
	6.7 States
	6.8 Denotations and their constructors
	6.9 An example of a colloquial syntax
	6.10 Remarks about a possible implementation of Lingua-SQL

	7 What remains to be done
	7.1 The development of Lingua
	7.2 The development of a software environment for language designers
	7.3 Two basic research problems

	8 References
	9 Index

