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Abstract  
The paper is devoted to showing how to systematically design a programming language in “re-
verse order”, i.e. from denotations to syntax. This construction is developed in an algebraic 
framework consisting of three many-sorted algebras: of denotations, of an abstract syntax and 
of a concrete syntax. These algebras are constructed in such a way that there is a unique homo-
morphism from concrete syntax to denotations, which constitutes the denotational semantics of 
the language.  

Besides its algebraic framework, the model is set-theoretic, i.e. the denotational domains are 
just sets, rather than Scott’s reflexive domains. 

The method is illustrated by a layer-by-layer development of a virtual language Lingua: an 
applicative layer, an imperative layer (with recursive procedures) and an SQL layer where Lin-
gua is regarded as an API (Application Programming Interface) for an SQL engine. The latter 
is given a denotational semantics as well. 

Mathematically the model is based on so-called naive denotational semantics [17], many-
sorted algebras [21], equational grammars [6], and a three-valued predicate calculus based on 
a three-valued proposition calculus of J. McCarthy [25]. Three-valued predicates provide an 
adequate framework for error-handling mechanisms and also for the development of a Hoare-
like logic with clean-termination [10] for Lingua. That logic is used in [16] for the development 
of correctness-preserving programs’ constructors. This issue is, however, not covered by the 
paper. 

The langue is equipped with a strong typing mechanism which covers basic types (numbers, 
Booleans, etc.), lists, arrays, record and their arbitrary combinations plus SQL-like types: rows, 
tables and databases. The model of types includes SQL integrity constraints.  
 
Keywords Set-theoretic denotational semantics, many-sorted algebras, three-valued predicate 
calculus, a denotational model of types, abstract syntax, concrete syntax.  
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1 Introduction 

1.1 Reversing the traditional order of things 
The problem of mathematically-provable program-correctness appeared for the first time in a 
work of Alan Turing [29] published in conference-proceedings On High-Speed Calculating 
Machines, which took place at Cambridge University in 1949. Later for several decades, that 
subject was investigated usually as proving program correctness, but the developed methods 
never became everyday tools for software engineers. Finally, these efforts were practically 
abandoned what has been commented in 2016 by the authors of a monography Deductive Soft-
ware Verification [1]: 

For a long time, the term formal verification was almost synonymous with functional verifi-
cation. In the last years, it became more and more clear that full functional verification is an 
elusive goal for almost all application scenarios. Ironically, this happened because of advances 
in verification technology: with the advent of verifiers, such as KeY, that mostly cover and 
precisely model industrial languages and that can handle realistic systems, it finally became 
obvious just how difficult and time-consuming the specification of the functionality of real sys-
tems is. Not verification but specification is the real bottleneck in functional verification. 

In my opinion, the failure in constructing a practical system for program validation has had 
two sources.  

The first lies in the fact that in building a programming language we start from syntax and 
only later — if at all — define its semantics. The second source is somehow similar but concerns 
programs: we first write a program and only then try to prove it correct.  

To build a logic of programs for a programming language, one must first define its semantics 
on a mathematical ground. Since 1970-ties it was rather clear for mathematicians that such 
semantics to be “practical” must be compositional, i.e., the meaning of a whole must be a com-
position of the meanings of its parts. Later such semantics were called denotational — the 
meaning of a program is its denotation — and for about two decades researchers investigated 
the possibilities of defining denotational semantics for existing programming languages. Two 
most complete such semantics were written in 1980 for Ada [4] and for CHILL [18] in using a 
metalanguage VDM [2]. A little later, but in the same decade, a minor exercise in this field was 
a semantics of a subset of Pascal written in MetaSoft [11], the latter based on VDM.  

Unfortunately, none of these attempts resulted in the creation of software-engineering tools 
that would be widely accepted by the IT industry. In my opinion that was unavoidable since for 
the existing programming languages a full denotational semantics simply cannot be defined 
(see Sec.3). That was, in turn, the consequence of the fact that historically syntaxes were coming 
first and only later researchers were trying to give them a mathematical meaning. In other words 
— the decision of how to describe things preceded the reflection of what to describe.  

In addition to that, two more issues were complicating denotational models of programming 
languages. They were related to two mechanisms considered important in 1960-ties but later 
abandoned and forgotten. One was a common jump instruction goto, the other — specific pro-
cedures that may take themselves as parameters (Algol 60, see [26]). The former has led to 
continuations (see [22]), the latter to reflexive domains (see [27]). Both contributed to a 
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technical complexity of denotational models which was discouraging not only for practitioners 
but even for mathematicians.  

The second group of problems followed from a tacit assumption that in the development of 
a mathematically correct program the development of a program should precede the proof of 
its correctness. Although this order is quite obvious in mathematics — first theorem, then its 
proof — it is rather awkward for an engineer who first performs all necessary calculations (the 
proof) and only then builds his bridge or aeroplane.   

The idea “first a program and correctness-proof later” seems not only irrational but also 
practically rather unfeasible for two reasons. 

First reason follows from the fact that a proof of a theorem is usually longer than the theorem 
itself. Consequently, proofs of program correctness should contain thousands if not millions of 
lines. It makes “hand-made proofs” rather unrealistic. On the other hand, automated proofs were 
not available by the lack of formal semantics for existing programming languages.  

Even more important seem, however, the fact that programs that are supposed to be proved 
correct are usually incorrect! Consequently, correctness proofs are regarded as a method of 
detecting errors in programs. In other words, we are first doing things in a wrong way to correct 
them later. Such an approach does not seem very rational either.  

As an attempt to cope with all the mentioned problems I propose some mathematical tools 
and methods that allow for the development of programming languages with denotational se-
mantics.  Their detailed description may be found in a preprinted book. To illustrate these meth-
ods an exemplary programming language, Lingua has been developed from denotations to syn-
tax (first publication of that method in [12]). In this way, the decision of what to do (denota-
tions) precedes the decision of how to express that (syntax).  

Mathematically both the denotations and the syntaxes constitute many-sorted algebras 
(Sec.2.2), and the associated semantics is the homomorphism from syntax to denotations. As 
turns out, there is a simple method — to a large extend algorithmizable — of deriving syntax 
from (the description of) denotations and the semantics from both of them.  

At the level of data structures, Lingua contains Booleans, numbers, texts, records, arrays 
and their arbitrary combinations plus SQL databases. It is also equipped with a relatively rich 
mechanism of types, e.g. covering SQL-like integrity constraints1, and with tools allowing the 
user to define his/her own types structurally. At the imperative level, Lingua contains struc-
tured instructions, type definitions, procedures with recursion and multi-recursion and some 
preliminaries of object programming.  

The issue of concurrency is not tackled in [16] since the development of a “fully” denota-
tional semantics for concurrent programs (if at all possible) would require separate research2. 

Ones we have a language with denotational semantics, we can define program-construction 
rules that guarantee the correctness of programs developed in using these rules. This method 
was for the first time sketched in my paper [8] and in [16] is described in Sec.8. It consists in 
developing so-called metaprograms which syntactically include their specifications. The 
method guarantees that if we compose two or more correct programs into a new program, we 

                                                 
1 Except subordination relations which are described by a different mechanism.  
2 There exist mathematical semantics of concurrency which can be said to be only “partially denota-
tional”. An example of such a solution is a “component-based semantics” (cf. [2]), where the denotations 
of programs’ components are assigned to programs in a compositional way (i.e. the denotation of a 
whole is a composition of the denotations of its parts), but the denotations themselves are so called 
fucons whose semantics is defined operationally. 
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get a correct program again. The correctness proof of a program is hence implicit in the way 
the program has been developed.  

Basic mathematical tools used in my denotational models are the following: 
1. fixed-point theory in partially ordered sets, 
2. the calculus of binary relations, 
3. formal-language theory and equational grammars, 
4. fixed-point domain-equations based on so-called naive denotational semantics (cf. [17]),  
5. many-sorted algebras, 
6. abstract errors as a tool for the description of error-handling mechanisms, 
7. three-valued predicate calculi of McCarthy and Kleene, 
8. the theory of total correctness of programs with clean termination (cf. [10]). 

All these tools are described in Sec.2 and Sec.8 of [16], and some of them are sketched in 
Sec.1.4 of the present paper.  

In constructing Lingua, I assume three priorities regarding the choice of programming 
mechanisms: 

• the priority of the simplicity of the model, i.e., the simplicity of denotations, syntax, and 
semantics; this has laid to the resignation from, e.g., goto instruction and self-applica-
tive procedures, 

• the priority of the simplicity of program-construction rules; e.g., the assumption that the 
declarations of variables and procedures, as well as the definitions of types, should be 
located at the beginning of a program, 

• the priority of protection against “oversight errors” of a programmer; e.g., the resignation 
of global variables in procedures and of side-effects in functional procedures. 

All these commitments forced me to give up some programming constructions which — alt-
hough denotationally definable — would lead to complicated descriptions and even more com-
plicated program-construction rules. It is worth mentioning in this place that the priority of 
simplicity is not new in the history of programming languages. For that very reason, program-
ming-language designers abandoned goto-s as well as self-applicative procedures.  

The name Lingua has been chosen to commemorate the circumstances under which from 
October to December 1969 I wrote my first denotational semantics of a very simple program-
ming language (this work was later published in Dissertationes Mathematicae [5] as my habil-
itation (postdoctoral) thesis). During three months as a scholar of the Italian Government, I was 
working in the Istituto di Elaborazione dell’Informazione in Pisa. I didn't yet know the works 
of Dana Scott or the concept of denotational semantics, and I constructed my language and its 
semantics on a model theory known in mathematical logic. Only eighteen years later, in the 
year 1987, I described (in [12]) the idea of how to develop syntax from detonations.  

1.2 What is in the paper 
I am deeply convinced that one can talk about programming in a precise and clear way. I also 
believe that taking responsibility by software engineers should be possible in the same way as 
it is in the case of the engineers of cars, bridges or aeroplanes. However, I am aware of the fact 
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that the existing tools for software engineers do not allow for the realisation of any of these 
goals.  

The paper contains many thoughts developed in the years 1960-1990 that later have been 
abandoned. One of the teams developing these ideas was working in the Institute of Computer 
Science of the Polish Academy of Sciences, and I had the pleasure to chair it. At that time we 
have developed a semi-formal metalanguage MetaSoft dedicated to formal definitions of pro-
gramming languages (cf. [11]). This metalanguage is used in [16] and in the present paper as a 
definitional vehicle for denotational models. 

I am aware of the fact that the content of [16] represents a very restricted part of the world 
of today’s programming languages. Something had to be chosen, however, to begin with. Lin-
gua contains, therefore, a selection of programming tools that have been known for many years 
and that are still in use. In the future, I shall try to complete my models with those vehicles that 
my readers will consider important. I also hope that maybe some of my readers will undertake 
this challenge. Feel invited to cooperate.  

1.3 What this paper is not offering 
The quality of a program consists in: 

1. the compatibility of the program’s specification with the expectations of its user, 
2. the compatibility of the program itself with its specification. 

In this paper, and in [16], I am tackling only the second aspect. My choice is not caused by the 
fact that the first problem is less important, or that it has been already solved, but only because 
the second problem was the main subject on my research for two decades and therefore I dare 
to talk about it now3.  

I also have to emphasise very strongly that my virtual language Lingua is not regarded nei-
ther as a practical programming language nor even as a standard of such a language although 
maybe a real language will grow from Lingua in the future. At present, it only offers a platform 
where to explain the constructions and the models discussed in [16]. I have tried to cover in it 
the selected basic tools that are present in languages which are known to me today. I resigned 
form concurrency, and object programming is in [16] only roughly sketched.  

I believe, however, that there are enough applications today that can be developed in using 
the tools described in [16].  

1.4 What is new in my approach 
By “my approach” I understand the ideas and techniques described in my early papers from [6] 
to [15], which have been summarised and extended in the preprint book [16]. All these ideas 
base on concepts well-known for years: 

• denotational semantics of D. Scott’s and Ch. Strachey’s (cf. [27], [28]), 

• generative grammars of N. Chomsky’s (cf. [19], [20]), 

• Hoare’s logic of programs (cf. [23]), 

                                                 
3 I am convinced that the first problem is equally fascinating as the second. I would very much welcomed 
any initiative of a cooperation in this field.  
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• on many-sorted algebras introduced to the mathematical foundations of computer sci-
ence by J. A Goguen, J.W, Thatcher, E.G Wagner and J.B Wright (cf. [21]), 

• three-valued propositional calculus S.C. Kleene’s (cf. [24]). 
What ― I believe is new in my approach ― is the following: 

1. Programming language design and development:  
1.1. Denotational model based on set-theory rather than on D. Scott’s reflexive domains 

which makes the model much simpler and easy to be formalized. 
1.2. A model of data-types that covers not only structured and user-defined types but 

also SQL integrity constraints. 
1.3. A formal, and to a large extend an algorithmic method of a systematic development 

of syntax from denotations and of a denotational semantics from both of them.  
1.4. The idea of a colloquial syntax which allows making syntax user-friendly without 

damaging a denotational model. 
1.5. Systematic use of error-elaboration in programs supported by a three-valued predi-

cate calculus. 
2. The development of correct programs 

2.1. A method of systematic development of correct programs with their specifications, 
rather than an independent development of programs and specifications followed by 
program-correctness proof. 

2.2. The use of three-valued predicates to extend Hoare’s logic by a clean termination 
property. 

3. General mathematical tools 
3.1. Equational grammars applied in defining the syntax of programming languages. 
3.2. A three-valued calculus of predicates applied in designing programming languages 

and in defining sound program constructors for such languages. 

2 Mathematical preliminaries 
For a full description of mathematical tools used in the development of denotational models see 
Sec.2 of [16] Below there is a selection of concepts and notations that are used in the present 
paper. They all come from MetaSoft [11] ― a metalanguage for the description of program-
ming languages4. 

2.1 Notational conventions 
I do not assume that the reader is acquainted with [16] and therefore I use only as much of my 
metalanguage as necessary to make the paper sufficiently clear and concise. Let me start with 
some basic notations: 

• a : A means that a is an element of the set A; according to the denotational dialect 
sets are most frequently called domains,  

                                                 
4 Developed in the decade 1980-1990 in the Institute of Computer Science of the Polish Academy of 
Sciences by a team which I had a honor to chair.  



Andrzej Blikle, An experiment with denotational semantics  9 
 

• f.a denotes f(a), and f.a.b.c denotes ((f(a))(b))(c); intuitively f takes a as an argument 
and returns the value f(a) which is a function which takes b as an argument and returns 
the value (f(a))(b), which is again a function… 

• f ● g denotes the sequential composition of functions, i.e. (f●g).a = g.(f.a) 

• A → B denotes the set of all partial functions from A to B, i.e., functions which are 
(possibly) undefined for some elements of A,   

• A ⟼ B denotes the set of all total functions from A to B, i.e., functions undefined for 
all elements of A; of course, A ⟼ B is a subset of A → B, 

• A ⟹ B denotes the set of all finite function from A to B, i.e. functions defined for 
only finite subsets of A; such functions are called mappings, and of course, each map-
ping is a particular case of a partial function, 

• [a1/b1,…,an,bn] denotes a mapping that assigns bi to ai and is undefined otherwise,  

• A | B denotes the set-theoretic union of A and B, 

• A x B denotes the Cartesian product of A and B, 

• Ac* denotes the set of all finite (possibly empty) tuples of the elements of A, 

• Ac+ denotes the set of all finite non-empty tuples of the elements of A, 

• If L is a formal language (i.e. a set of words), then L* denotes the set of all finite 
concatenations of words in L, 

• tt and ff denote logical values „true” and „false” respectively, 

• many-character symbols like dom, bod, com denote metavariables running over do-
mains and if they are written with quotation marks as ‘abdsr’ denote themselves, i.e., 
metaconstants5.  

• in the definitional clauses of Lingua instead of indexed variables like sta1, we write 
sta1 or sta-1 which is closer to a notation used in programs. 

In this paper three different linguistic levels are distinguished: 
1. the level of the basic text of the paper written in Times New Roman, 

2. the level of a formal, but not formalized, metalanguage MetaSoft written in Arial, 
3. the level of formalized programming language Lingua whose syntax, i.e. programs are 

written in Courier New. 

The difference between “formal” and “formalized” is such that the former is introduced intui-
tively as a mathematical notation, whereas the latter requires an explicit definition of syntax 
(usually by a grammar) and a formal definition of semantics. 

A frequently used construction in MetaSoft is a conditional definition of a function with the 
following scheme: 

f.x =  
p1.x  g1.x 
p2.x  g2.x 

                                                 
5 Metavariables and metaconstants are objects of the metalanguage MetaSoft whereas variables and 
constants are objects of the programming language Lingua.  
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…     
true  gn.x 

where each pi is a classical predicate, i.e., a total function with logical values tt or ff, true is a 
predicate which is always satisfied, and each gi is just a function. The formula above is read as 
follows: 

if p1.x is true, then f.x = g1.x and otherwise, 

if p2.x is true, then f.x = g2.x and otherwise, 
… 

and in all other cases f.x = gn.x. 
Intuitively speaking the evaluation of such a function goes line by line and stops at the first line 
where pi.x is satisfied.  

In the scheme above I also allow the situation where, in the place of a gi.x we have the 
undefinedness sign “?” which means that for x that satisfies pi.x the function f is undefined. 
This convention is used in conditional definitions of partial functions. 

In such definitions we also use a technique similar to defining local constants in programs. 
For instance if f : A x B ⟼ C we can write 

f.x =  
p1.x    g1.x 
let  

(a, b) = x 
p2.a   g2.x 
p3.b   g3.x. 

which is read as: “let x be a pair of the form (a, b)”. We can also use let in the following way: 
f.x =  

p1.x    g1.x 
let  

y = h.x 
p2.x   g2.y 
p3.x   g3.y. 

All these explanations are certainly not very formal, but the notation should be clear when it 
comes to concrete examples in the sequel of the paper. 

By [a1/vn,…,an/vn] I denote a finite-domain functions with domain {a1,…,an} and the cor-
responding values {v1,…,vn}. By f[a1/vn,…,an/vn] I denote an overwriting of f by 
[a1/vn,…,an/vn], i.e. a function which differs from f only on the domain {a1,…,an}. 

For any two functions f : A → B and g : B → C by f ● g denotes the sequential composition 
of these functions, i.e. 

(f ● g).a = g.(f.a) 
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2.2 Many-sorted algebras 
The denotational model of a programming language investigated in [16]is based on the concept 
of a many-sorted algebra. Half formally, a many-sorted algebra is a finite collection of sets, 
called the carriers or sorts of the algebra, and a finite collection of functions called the con-
structors of the algebra. The constructors take arguments from and return their values to carri-
ers. A graphical representation of a two-sorted algebra of numbers and Booleans is shown in 
Fig. 2.2-1. This algebra will be referred to as NumBool. 

 
Fig. 2.2-1 Graphical representation of a two-sorted algebra NumBool 

A textual representation of NumBool ― called the signature of this algebra ― is shown in the 
left part of Fig. 2.2-2. 

The algebra NumBool 
1  :       ⟼ Num 
0  :      ⟼ Num 
+   : Num x Num  ⟼ Num 
=   : Num x Num  ⟼ Bool 
<   : Num x Num  ⟼ Bool 
tt   :       ⟼ Bool 
ff   :       ⟼ Bool 
not : Bool     ⟼ Bool 
or   : Bool x Bool   ⟼ Bool 

The algebra NumBoolExp 
1  :                    ⟼ NumExp 
0  :                   ⟼ NumExp 
+   : NumExp x NumExp  ⟼ NumExp 
=      : NumExp x NumExp     ⟼ BoolExp 
<      : NumExp x NumExp     ⟼ BoolExp 
tt  :                    ⟼ BoolExp 
ff  :                    ⟼ BoolExp 
not : BoolExp             ⟼ BoolExp 

    or  : BoolExp x BoolExp      ⟼ BoolExp 
Fig. 2.2-2 The signatures of two mutually similar algebras 

In our algebra, we have four zero-argument constructors 1, 0, tt, ff, one one-argument construc-
tor not, and four two-argument constructors +, =, <, or. The zero-argument constructors create 
elements of carriers “from nothing”, whereas all other constructors create elements of carriers 
from other elements of carriers.  

An element of an algebra is called reachable if it can be constructed (reached) using the 
constructors of the algebra. In NumBool, where Num denotes the set of all real numbers, the 
reachable subset of Num contains only non-negative integers.  

By a reachable subalgebra of an algebra we mean its subalgebra with carriers restricted to 
their reachable parts. In our case, this is an algebra of nonnegative integers and Booleans. 

An algebra is said to be reachable if all its carriers contain only reachable elements. Notice 
that if we remove the zero-argument constructor 1 from NumBool, then the reachable subset 
of Num becomes empty. 
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In the algebraic approach to denotational models, the algebra of program denotations (mean-
ings) is usually unreachable, whereas the algebras of syntax are reachable by definition (see 
Sec.2.3). 

On the right-hand side of Fig. 2.2-2 we have the signature of a syntactic algebra Num-
BoolExp of (variable-free) expressions. This algebra is similar to NumBool in the sense that 
there is a one-one correspondence between the constructors and the carriers of both algebras, 
and the “types of constructors” in one algebra are similar to the types in the other (for a formal 
definition see Sec.2.11 of  [16]). In our example this correspondence is implicit row-by-row in 
the notation: 1 corresponds to 1, 0 corresponds to 0, NumExp corresponds to Num, + corre-
sponds to +, etc. The constructors of NumBoolExp create expressions. E.g. the constructor + 
given two numeric expressions nexp-1 and nexp-2 creates the expression6: 
+(nexp-1, nexp-2) 

Examples of expressions are: 
1, 0, +(1,1), +(1,+(1,0)), tt, not(<(1,+(1,1)) 

We shall assume that NumBoolExp contains only reachable expressions. Such algebra is im-
plicit in the signature of NumBool and, due to its reachability, is unique. Traditionally it is 
called the abstract syntax of the algebra NumBool.  

It may be easily proved that for every algebra Alg ― and in fact for its signature ― there 
exists a unique algebra of abstract syntax AbsSyn. It is also easy to prove that there exists a 
unique homomorphism: 

 As : AbsSyn ⟼ Alg 
We call it the abstract semantics of AbsSyn. Of course, a homomorphism between many-
sorted algebras is a tuple of functions ― one for every carrier. In the case of our example we 
have two corresponding functions: 

SemE : NumExp ⟼ Num 
SemB : BoolExp ⟼ Bool 

which satisfy the equations (called the semantic clauses):  

SemE.[1] = 1 

SemE.[+(nexp-1, nexp-2)] = SemE.[nexp-1] + SemE.[nexp-2]    (2.2-1) 

SemB.[<(nexp-1, nexp-2)] = SemE.[nexp-1] < SemE.[nexp-2] 

etc.  
For instance : 

SemE.[+(1,+(1,0))] = 2 

SemB.[<(+(1,+(1,0)),0)] = ff 

Notice that our homomorphism is “gluing” many different expressions into the same number 
or Boolean element, e.g.  

SemE.[+(1,+(1,0))] = SemE.[+(1,1)] = 2 

                                                 
6 For simplicity I use here the same symbol “+” to denote a constructor of expressions and a syntactic 
symbol of addition.  
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SemB.[<(+(1,+(1,0)),0)] = SemB.[<(0,0)] = ff 

The notation of an abstract syntax is rather awkward and therefore abstract syntax is usually 
transformed into a concrete syntax, which is more “user-friendly”. In our case it would corre-
spond to an infix notation where the concrete + given two expressions nexp-1 and nexp-2 
creates the expression: 
(exp-1 + exp-2) 

and similarly for other constructors. From an algebraic perspective concrete syntax is an algebra 
― let’s denote it by ConSyn ― defined in a way that guarantees the existence of two homo-
morphisms: 

Co : AbsSyn ⟼ ConSyn  ― the concretization of abstract syntax 

Cs : ConSyn ⟼ Alg     ― the (unique) concrete-syntax semantics. 
and moreover that 

As = Co ● Cs 
More about a denotational model of programming languages in Sec. 3.2. Readers interested in 
the mathematical justifications of the model are referred to sections from 2.10 to 2.13 of [16] 
and to the references given there.  

2.3 Equational grammars 
Let A be an arbitrary finite set of symbols called an alphabet. By a word over A, we mean every 
finite sequence of the elements of A including the empty sequence ε. If p and q are words, then 
by their concatenation ― in symbols pq ― we mean a sequential combination of these words.  

Sets of words over A are called formal languages or just languages over A. If P and Q are 
languages, then the language 

PQ = {pq | p : P and q : Q} 
is called the concatenation of P and Q. Similarly to the Cartesian + and * defined in Sec.2.1 
we define analogous operations on languages: 

P0 = {ε}, Pn = PPn-1 for n > 0 
P+  = U { Pn | n > 0} 
P* = P+ | P0 

By an equational grammar over an alphabet A we mean a set of recursive equations of the form: 

X1 = p1.(X1,…,Xn) 
…  
Xn = pn.(X1,…,Xn) 

where Xi’s run over languages over A and all pi’s are operations on languages constructed as 
combinations of finite languages (constants), union, concatenation, power, star and plus opera-
tions. It may be proved that every equational grammar has a unique least7 solution which con-
stitutes a tuple (P1,…,Pn) of languages. Such a tuple will be called a many-sorted language.  

                                                 
7 In the sense of a component wise inclusion.  
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Every equational grammar defines unambiguously a reachable algebra of words. The fol-
lowing grammar defines the algebra NumBoolExp of Sec.2.2: 

NumExp = 0 | 1 | +(NumExp, NumExp) 

BoolExp = tt | ff | =(NumExp, NumExp) | <(NumExp, NumExp) | 

    not(BoolExp) | or(BoolExp, BoolExp) 

According to a usual style for writing grammars, the symbols 0, 1, tt, ff, +, =, <, 
not, or, (, ) and the coma denote one-element languages: {0}, {1},…  

Equational grammars correspond closely to context-free grammars introduced by Noam 
Chomsky (e.g. in [19]) in the sense that for each context-free grammar there exists an equational 
grammar that defines the same many-sorted language, and for a certain class of equational 
grammars there exists an equivalent context-free grammar. They have been introduced in [6] 
and are also described in Sec.2.5 and Sec.2.14 of [16]. 

2.4 Abstract errors 
For practically all expressions appearing in programs their values in some circumstances cannot 
be computed “successfully”. Here are a few examples: 

• the value of x/y cannot be computed if y = 0, 

• the value of the expression x+1 cannot be computed if x has not been declared in the 
program, 

• the value of x+y cannot be computed if the sum exceeds the maximal number allowed 
in the language, 

• the value of the array expression a[k] cannot be computed if k is out of the domain of 
array a, or if a is not an array, 

• the query “Has John Smith retired?” cannot be answered if John Smith is not listed in 
a database. 

In all these cases a well-designed implementation should stop the execution of a program and 
generate an error message or perform a recovery procedure.  

To describe that mechanism formally, we introduce the concept of an abstract error. In a 
general case abstract errors may be anything, but in our models, they are going to be texts such 
as, e.g., ‘division-by-zero’. They are closed in apostrophes to distinguish them from metavari-
ables. 

The fact that an attempt to evaluate x/0 raises an error message can be now expressed by the 
equation: 

x/0 = ‘division-by-zero’ 
In the general case with every domain Data, we associate a corresponding domain with abstract 
errors 

DataE = Data | Error 
where Error denotes the set of all abstract errors that are generated by our programs. Conse-
quently every partial operation  

op : Data1 x … x Datan → Data 
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whose partiality is computable8 may be extended to a total operation 

 ope : DataE1 x … x DataEn ⟼  DataE 
Of course ope should coincide with op wherever op is defined.  

The operation ope is said to be transparent for errors or simply transparent if the following 
condition is satisfied: 

if dk is the first error in the sequence d1,…,dn, then ope.(d1,…,dn) = dk 

Intuitively this condition means that arguments of ope are evaluated one-by-one from left to 
right, and the first error (if it appears) becomes the final value of the computation. 

The majority of operations on data that will appear in our models are transparent. Exceptions 
are boolean operations discussed in Sec.2.5 

Error-handling mechanisms may be implemented in such a way, that errors serve only to 
inform the user that (and why) program execution has been aborted. Such a mechanism is called 
reactive. Another option is that the generation of an error results in an action, e.g. of recovering 
the last state of a database. Such mechanisms are called proactive.  

A reactive mechanism may be quite easily enriched to a proactive one (see Sec.6.1.8 and 
Sec.12.7.6.4 of [16]). However, since the latter is technically more complicated, in this paper 
only reactive model will be discussed. 

A well-defined error-handling mechanism allows avoiding situations where programs are 
aborted without any explanation, or even worse — when they generate an incorrect result with-
out a warning of the user.  

2.5 Three-valued propositional calculus 
Tertium non datur — used to say ancients masters. Computers denied this principle. 

In the Aristotelean classical logic, every sentence is either true or false. The third possibility 
does not exist. However, in the world of computers, the third possibility is not only possible but 
just inevitable. E.g. in evaluating a boolean expression x/y>2 an error will appear if x=0. 

To describe the error-handling mechanism of boolean expressions, we introduce a domain 
of Boolean values with an error 

BooleanE = {tt, ff, ee}. 
In this case, ee stands for “error”, but in fact, represents either an error or an infinite computa-
tion (a looping). In this section, we assume for simplicity that there is only one error. This 
assumption does not disturb the generality of our model as long as all errors are handled in the 
same way.  

Now, it turns out that the transparency of boolean operators would not be an adequate choice. 
To see that consider a conditional instruction: 
if x ≠ 0 and 1/x < 10 then x := x+1 else x := x–1 fi 

                                                 
8 Informally speaking a partiality of a function F is computable if we can write a procedure which given 
an arbitrary tuple d1,…,dn of arguments of F will check if F.(d1,…,dn) is or is not defined. E.g. for an array 
expression arr[k] we can check if the index k belongs to the index range of the array arr. From the 
general theory of computability we know, however, that there exist functions with non-computable par-
tialities.  
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We would probably expect that for x=0 one should execute x:=x-1. If however, our conjunc-
tion would be transparent, then the expression  
x ≠ 0 and 1/x < 10  

would evaluate to ‘division-by-zero’ which means that the program aborts. Notice also that the 
transparency of and would imply  

ff and ee = ee 
which would mean that an interpreter that evaluates p and q first evaluates both p and q ― as 
in “usual mathematics” ― and only later applies and to them. Such a mode is called an eager 
evaluation.  

An alternative to it is a lazy evaluation where, if p = ff, then the evaluation of q is skipped, 
and the final value of the expression is ff. In such a case: 

ff and ee = ff 
tt or ee = tt 

A three-valued propositional calculus with lazy evaluation was described in 1961 by John 
McCarthy (in [25]) who defined boolean operators as shown in Tab. 2.5-1 

 
or-m tt ff ee 

tt tt tt tt 
ff tt ff ee 
ee ee ee ee 

 

 
and-m tt ff ee 

tt tt ff ee 
ff ff ff ff 

ee ee ee ee 
 

 
not-m  

tt ff 
ff tt 
ee ee 

 

Tab. 2.5-1 Propositional operators of John McCarthy 

To see the intuition behind the evaluation of McCarthy’s operators consider the expression 
p or-m q assuming that its arguments are computed from left to right9: 

• If p = tt, then we give up the evaluation of q (lazy evaluation) and assume that the value 
of the expression is tt. Notice that in this case we maybe avoid an error message or an 
infinite computation that could be generated by q.  

• If p = ff, then we evaluate q, and its value ― possible ee ― becomes the value of the 
expression. 

• If p = ee, then this means that the evaluation of our expression aborts or loops at the 
evaluation of its first argument, hence the second argument is not evaluated. Conse-
quently, the final value of the expression must be ee. 

The rule for and is analogous. Notice that McCarthy’s operators coincide with classical oper-
ators on classical values (grey fields in the tables). McCarthy’s implication is defined 
classically: 

p implies-m q = (not-m p) or-m q 
As it turns out, not all classical tautologies remain satisfied in McCarthy’s calculus. Among 
those that are satisfied we have: 

                                                 
9 The suffix “-m” stands for “McCarthy” and is used to distinguish McCarthy’s operators not only from 
classical ones but also from the operators of Kleene, which are used in SQL.  
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• associativity of and and or, 

• De Morgan’s laws 
and among the non-satisfied are: 

• or-m and and-m are not commutative, e.g., ff and-m ee = ff but ee and-m ff = ee, 

• and-m is distributive over or-m only on the right-hand side, i.e. 
p and-m (q or-m s)  =  (p and-m q) or-m (p and-m s) however 

(q or-m s) and-m p  ≠  (q and-m p) or-m (s and-m p) since 
(tt or-m ee) and-m ff = ff  and  (tt and-m ff) or-m (ee and-m ff) = ee 

• analogously or-m is distributive over and-m only on the right-hand side, 

• p or-m (not p) does not need to be true but is never false, 

• p and-m (not p) does not need to be false but is never true. 

3 General remarks about denotational models 

3.1 Why do we need denotational models? 
Denotational models of programming languages serve as a starting point for the realisation of 
three tasks:  

1. building the implementation of the language, i.e. its parser and interpreter or compiler,  
2. creating rules of building correct specified programs, 
3. writing a user manual.  

In building a language in this way, we should observe one very important (although not quite 
formal) principle of simplicity: 

A programming language should be as simple and easy to use as possible, although without 
damaging its functionality, mathematical clarity and the completeness of its description. The 
same applies to the manual of languages and to the rules of building correct programs. 
This principle shall be realised by caring to make:  

1. the syntax of the language as close as possible to the language of intuitive mathematics, 
for example, whenever this is common, we use infix notation and allow the omission of 
“unnecessary” parentheses,  

2. the structure of the language (i.e. program constructors) leading to possibly simple rules 
of constructing correct programs (Sec.8 of [16]),  

3. the semantics of the language easy to understand by the user rather than convenient for 
the builder of implementation; for the latter an implementation-oriented equivalent 
model may be written. 

Special attention should be given to point 2 because the simplicity of the rules of building cor-
rect programs leads to a better understanding of programs by programmers. This fact was real-
ised already in the years 1970 and has led to the elimination of goto instructions. This decision 
resulted in a major simplification of programs’ structures, which increased their reliability. 
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Following point 3, I will sometimes — as common in mathematics — "forget" about the 
difference between syntax and denotations. E.g. I will talk about the value of an expression 
x + y, rather than about the value of its detonation. I would say that the instruction x:=y+1 
modifies variable x, instead of saying that the denotation of this instruction modifies the 
memory state at variable x, etc. Of course, on a formal level syntax will be precisely distin-
guished from denotations.  

3.2 Five steps to a denotational model 
Building up Lingua I refer to an algebraic model described in Sec.2.2. This model corresponds 
to the diagram of three algebras shown in Fig. 3.2-1. We build it in such a way that the existence 
of the semantics Cs of concrete syntax is insured, and the equation:  

As = Co ● Cs  
is satisfied. 

The construction of a denotational model begins with an algebra of detonation Den. Its con-
structors unambiguously determine the reachable subalgebra ReDen. From the signature of 
Den, we unambiguously derive the abstract syntax algebra AbsSy. The first of these steps is 
creative since it comprises all the major decisions about the future language. Contrary to it, the 
derivation of AbsSy can be performed algorithmically. The corresponding algorithm takes the 
description ― e.g. in MetaSoft ― of the signature of Den. This technique will be explained in 
more details in the subsequent sections. 

 
Fig. 3.2-1 An algebraic model of a programming language 

As we saw in Sec.2.2, the abstract syntax is not very convenient for programmers. To make it 
more user-friendly, in the next step we build a concrete syntax ConSy. In typical situations, 
this is done by replacing prefix notation by infix notation and skipping some "unnecessary" 
parentheses. A typical example of skipping parentheses is the replacement of a sequential com-
position of instructions in the abstract-syntax: 
;(ins-1, ;(ins-2, ins-3)) 

by its concrete-syntax version: 
ins-1 ; ins-2 ; ins-3 

Although the corresponding homomorphism Co (concretisation) is “gluing” two abstract pro-
grams 
;(ins-1, ;(ins-2, ins-3)) and 
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;(;(ins-1, ins-2), ins-3) 

into the same concrete program, this parsing ambiguity (of the corresponding grammar) is not 
harmful to the existence of a concrete semantics: 

Cs : ConSy ⟼ ReDen 
since abstract semantics As is gluing these programs into a common denotation10.  

Another simplification that we may like to introduce into our language is the omission of 
parentheses in numeric expression. E.g. instead of writing 
(x + (y + z))) 

we would like to write 
x + y + z                          (3.2-1) 

In this case, however, we end up with a syntax which does not have a semantics into Den, since 
the expression (3.2-1) corresponds to two concrete expressions: 
(x + (y + z))) and 
((x + y) + z) 

whose denotations are not the same. It is due to the fact that in every computer arithmetic there 
is a limit for the “size” of a number. E.g. if the largest acceptable number is 10, then 

(-4 + (10 + 3)) = ‘overload’             (an error-message, see Sec.2.4) 
((-4 + 10) + 3) = 9 

In other words, computer addition is not associative.  
A usual solution in such a case is the assumption that expressions are evaluated from left to 

right which means that (3.2-1) is evaluated as 
((x + y) + z). 

In other words, an interpreter of the language first add the “missing” parentheses and then eval-
uates the expression according to the concrete semantics. The same technique is used in the 
evaluation of expressions with addition and multiplication, e.g., 
x + y + z * x 

in which case the operation of adding parentheses refers to the priority of multiplication over 
addition, hence the resulting concrete expression is: 
((x + y) + (z * x)) 

To formalize this technique in our framework we introduce yet another algebra called a collo-
quial syntax and denoted by ColSy (Fig. 3.2-2). This algebra is not homomorphic to concrete 
syntax and has a different signature. However, it is constructed in such a way there exists an 
implementable transformation  

Rt : ColSy ⟼ ConSy 

                                                 
10 Formally this means that the algebra of concrete syntax is not more ambiguous than the algebra of 
denotation which guarantees the existence of a unique homomorphism between them (see Sec.2.13 of 
[16]).  
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which “removes colloquialisms”, which in our case means adding the missing parentheses. 
Such a transformation is called the restoring transformation and of course, is not a homomor-
phism. 

A user manual of a programming language with colloquialisms describes concrete syntax by 
a grammar, and the colloquialisms as additional grammatical clauses. This means that the pro-
grammer is free to use either a concrete syntax or a colloquial one. 

 
Fig. 3.2-2 An algebraic model of a language with colloquial syntax 

To sum up, the construction of a programming language with a denotational model consists of 
five steps: 

1. The construction of Den where we decide about the meaning of future programs and 
their constructors. This is the most creative step where we decide about all the program-
ming mechanisms of our language. 

2. The derivation of abstract syntax, i.e. its grammar, from the signature of Den. This step 
is fully programmable. 

3. The definition of concrete syntax, i.e. its grammar. To a certain degree, this is a creative 
step again, although in this case it may be supported by a software tool which assists the 
designer in transforming the grammar of abstract syntax into its concrete counterpart. 

4. The description of the semantics Cs of concrete syntax. The definition of this semantics, 
i.e. the semantic clauses as (2.2-1), may be derived algorithmically from the definitions 
of Den, AbsSy and ConSy.  

5. The enrichment of the concrete syntax by colloquialisms and the definition of the cor-
responding restoring transformation. This is again a creative step.  

3.3 Two layers of a programming language 
In the sequel of the paper we will see how to use the described model to construct a 
programming languages with two basic layers of programming tools: 

1. applicative layer covering data expressions and type expressions whose denotations are 
functions from states to data and from states to types respectively, 

2. imperative layer covering instructions and declarations whose denotations are functions 
from states to states. 
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4 The applicative layer of Lingua 

4.1 The data 
Data available in Lingua may be split into two categories: 

• simple data including Booleans, numbers, and words (finite strings of characters), 

• structural data including list, many-dimensional arrays, records, and their arbitrary 
combinations. 

Structural data may „carry” simple data as well as other structural data. That means that we 
may build “deep” data structures, e.g., lists that carry records of arrays. Lists and tables always 
carry elements of the same type whereas records are not restricted in this way. 

All our data (with abstract errors) and the corresponding constructors constitute a many-
sorted algebra of data.  

Formally the data domains in Lingua are defined by the following set of so called domain 
equations: 

boo : Boolean   = {tt, ff} 
num : Number  — the set of all numbers with restricted decimal representations 

ide : Identifier  — a fixed finite subset of the domain Alphabet+  
wor : Word    = {‘}Alphabet*{‘} 
lis  : List    = Datac* 
arr : Array   = Number ⟹ Data 
rec : Record  = Identifier ⟹ Data 
dat : Data   = Boolean | Number | Word | List | Array | Record  

The symbols boo, num, ide etc. which precede our equations are metavariables that will run 
over the corresponding domains in further definitions. This is just another notational conven-
tion.  

The domain Boolean consist of only two elements that represent “truth” and “false”. The 
domains Alphabet, Number and Identifier, are the parameters of our model which means that 
they may differ from one implementation to another.  

The Alphabet is a finite set of characters (except quotation marks), while Identifier is a 
finite fixed set of non-empty strings over Alphabet.  

A word is a finite string (possibly empty) of the elements of Alphabet closed between apos-
trophes. 

A list is a finite sequence (possibly empty) of arbitrary data. 
An array is a mapping from numbers to data, and a record is a mapping from identifiers to 

data.  
A data is a boolean, a number, a word, a list, an array or a record. Notice that identifiers are 

not included in data. They have been introduced only to define the domain of records. Identifiers 
that appear in records are called record attributes. 
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As we see, the four last equations have a recursive character, and therefore the existence of 
a solution of our set of equations is not evident. However, such a solution exists and is (in a 
sense) unique11 which may be proved on the ground of the theory of chain-complete partially 
ordered sets (Sec. 2.7 of [16]).  

It is to be emphasized in this place that the domain of data, and all of its subdomains, are 
larger than the corresponding sets of numbers, words, lists etc. that can be “generated” by the 
programs of Lingua. Further on we make sure that: 

1. all “executable” data are restricted in their size ― this is formalized be introducing a 
universal predicate oversized defined for all data, 

2. for any given list or array all its elements are of the same type (see Sec.4.2), 

3. the domain of each array must be of the form {1,…,n}, i.e. must be a set of consecutive 
positive integers starting from 1.  

The constructors of data are defined in such a way that all reachable data satisfy the above 
restrictions. This technique allows keeping our domain equations relatively simple.  

4.2 Composites, transfers, yokes, types and values 
Every data in Lingua has a type. Types describe properties of data but represent entities which 
can be constructed and modified independently of data. Our mechanism of types allows pro-
grammers to define their own types for future use either in defining new types or in declaring 
variables12.  

Types are pairs consisting of a body and a yoke. Every type is associated with a set of data 
of that type called the clan of the type. 

Intuitively a body describes an “internal structure of a data” ― e.g., indicates that a data is 
a number, a list or a record ― and formally is a combination of tuples and mappings. The 
domain equation that defines the domain of bodies is the following13: 

bod : Body =  
{(‘Boolean’)} | {(‘number’)} | {(‘word’)} |             (simple bodies) 

{‘L’} x Body |                         (list bodies) 
{‘A’} x Body |                     (array bodies) 
{‘R’} x (Identifier ⟹ Body)                  (record bodies) 

The bodies of simple data are one-element tuples of metaconstants, e.g. (‘Boolean’). The bodies 
of lists and arrays are respectively of the form (‘L’, bod) or (‘A’, bod) where the body bod is 
shared by all the elements of a list/array and where the initials ‘L’ and ‘A’ indicate that we are 
dealing with a list/ array.  

A record body is of the form (‘R’, body-record) where body-record is a metarecord of 
bodies such as, e.g.: 

Ch-name ;   (‘word’), 

                                                 
11 It is unique in the sense that by the solution of such an equation we mean its least solution where 
the ordering is the componentwise set-theoretic inclusion .  
12 Technical details in Sec. 5.2 of [16].  
13 This is again a recursive equation (as it was the case of data-domain equations) and again its 
unique solution exists.  
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fa-name ;    (‘word’), 
award-years ; (‘A’, (‘number’)), 
salary ;     (‘number’), 
bonus ;    (‘number’) 

The words on the left-hand-side of semicolons are attributes. The first two attributes and the 
last two have simple bodies, whereas the third one ― an array body. For the sake of further 
discussion, the body defined above will be referred to as employee. 

With every body bod, we associate a set of data with that body called the clan of that body 
and denoted by CLAN-Bo.bod. The function CLAN-Bo is defined inductively relative to the 
structure of bodies. E.g., the set CLAN-Bo.employee contains records with numbers, words, 
and one-dimensional number arrays assigned to the respective attributes.  

Next important concept from the “world” of data and types is a composite which is a pair 
(dat, bod) consisting of a data and its body such that: 

dat : CLAN-Bo.bod 
Composites are the results of data-expression evaluations (Sec.4.4). The use of composites per-
mits to describe the mechanism of checking if the arguments “delivered” to an operation are of 
appropriate types. E.g., if we try to put a word on a list of numbers, the corresponding operation 
will generate an error message. 

Having defined composites, we can define transfers and yokes. Transfers are one-argument 
functions that transform composites or errors into composites or errors and yokes are transfers 
with Boolean composites as values. By a Boolean composite we mean (tt, (‘Boolean’)) or (ff, 
(‘Boolean’)). Yokes may also assume abstract errors as values. 

 Mathematically yoks are close to one-argument predicates on composites14. An example of 
a yoke that describes a property of composites whose bodies are employee may be the ine-
quality: 

record.salary + record.bonus < 10000, 

This yoke is satisfied whenever its (unique) argument is a record composite with (at least) the 
attributes salary and bonus, and the data corresponding to these attributes satisfy the corre-
sponding inequality. In this example 

record.salary + record.bonus 

is a transfer which is not a yoke. It transforms record composites into number composites. If 
the argument of this yoke/transfer is not a record with attributes salary and bonus that carry 
numbers, then the result of the computation is an error.  

Yokes have been introduced into Lingua to describe SQL integrity constraints (for details 
see Sec.12 of [16]). 

Transfers have merely a technical role. We need them only to define an algebra where yokes 
may be constructed. With every transfer we associate its clan: 

  CLAN-Tr.tra = (com | tra.com = (tt, (‘Boolean’))}. 

                                                 
14 They “are closed to predicates” rather than simply “are predicates” since they assume as values 
composites and abstract errors rather than just Boolean values tt and ff. Their logical constructors and, 
or and not are the three-valued constructors of John McCarthy’s calculus defined by (Sec. 2.5).  
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Of course, the clans of transfers which are not yokes, are empty. By TT we denote the transfer 
that yields (tt, (‘Boolean’)) for any composite. 

A pair that consists of a body and a yoke is called a type. For technical reasons, types are 
defined as pairs consisting of a body and an arbitrary transfer (i.e. not necessarily a yoke). With 
every type typ = (bod, tra) we associate its clan which is the set of such composites whose 
data belong to the clan of the body and which satisfy the transfer. Formally: 

CLAN-Ty.(bod, tra) = {(dat, bod) | dat : CLAN-Bo.bod and (dat, bod) : CLAN-Tr.tra} 
The last concept associated with data and types is value. A value is a pair (dat, typ), i.e. 
(dat, (bod, tra)), which we sometimes write as ((dat, bod), tra). As we see, a value may be 
regarded, either as a pair data-type or as a pair composite-transfer. 

For technical reasons we also allow pseudo-values of the form (Ω, typ), where Ω is an ab-
stract object called a pseudo-data.   

Values are assigned in memory states to the identifiers of variables. Variable declarations 
assign pseudo values to variables, and initializing assignments replace Ω by a data.  

As we are going to see, an assignment instruction ― i.e., an instruction that assigns values 
to variables (see Sec.5.2) ― may only change the data assigned to a variable, and in some 
special cases its body, but never its yoke. To change a yoke, we use special yoke-oriented in-
struction. 

Summing up, the list of domains that are associated with data and their types in Lingua is 
the following 

dat : Data     = … (the definition in Sec.4.1) 

bod : Body     = … (the definition above in this section) 
com : Composite   = {(dat, bod) | dat : CLAN-Bo.bod} 
com : BooComposite = {(boo, (‘Boolean’)) | boo : Boolean} 
tra  : Transfer    = (Composite | Error) ⟼ (Composite | Error) 
yok : Yoke     = (Composite | Error) ⟼ (BooComposite | Error) 
typ : Type     = Body x Transfer 
val : Value     = Data x Type 

Similarly, as in many programming languages (although not in all of them), types in Lingua 
have been introduced for four reasons: 

1. to define a type of a variable when it is declared, and to assure that this type remains 
unchanged (with some exceptions)15 during program executions, 

2. to ensure that a data which is assigned to a variable by an assignment is of the type 
consistent with the declared type of that variable, 

3. to ensure that a similar consistency takes place when sending actual parameters to a 
procedure or when returning reference parameters by a procedure, 

                                                 
15 These exceptions take place e.g. when we add a new attribute to a record or to a database table or 
if we remove such attribute. 
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4. to ensure that in evaluating an expression, an error message is generated whenever data 
“delivered” to that expression are of an inappropriate type, e.g., when we try to add a 
word to a number or to put a record to a list of arrays. 

4.3 Expressions in general 
Expressions are syntactic objects and their denotations are functions from states to composites 
(data expressions), to transfers (transfer expressions) or to types type expressions). In order to 
define these concepts we start with the definition of a state: 

sta : State    = Env x Store                      (state) 
env : Env    = TypEnv x ProEnv            (environment) 
sto : Store   = Valuation x (Error | {‘OK’})              (store) 

vat : Valuation = Identifier ⟹ Value                (valuation)16 

tye : TypEnv   = Identifier ⟹ Type               (type environment) 

pre : ProEnv   = Identifier ⟹ Procedure | Function  (procedure environ-
ment)17 
As we see, states are binding identifiers to values, to types, to procedures, or to functions (func-
tional procedures) and besides they may store an error “in a dedicated register”. If a state does 
not carry an error, then this register stores ‘OK’. Every state is therefore a tuple of the form: 

(env, (vat, err))  where err : Error | {‘OK’} 
Having defined states we can define the domains of expression denotations of three categories:  

ded : DatExpDen = State → Composite | Error     (data-expressions denotations) 
tra  : TraExpDen = Transfer           (transfer-expressions denotations) 
ted : TypExpDen = State ⟼ Type | Error       (type-expressions denotations) 

The denotations of data expressions are partial functions which is due to the fact that data ex-
pressions may include functional-procedure calls18. 

The fact that denotations of transfer expressions are just transfers rather than functions from 
states to transfers is a consequence of the fact that in our model transfers cannot be “stored” in 
states, as it is in the case for data and types. This is, of course, an engineering decision rather 
than a mathematical must. It has been assumed only for the sake of simplicity.  

The three domains are the carriers of an algebra of expression denotations from which a 
syntactic (concrete) algebra of expressions is derived (as sketched in Sec.3.2) with the carriers 
DatExp, TraExp, TypExp. This leads to three functions of semantics which constitute a ho-
momorphism between our two algebras.  

Sde : DatExp  ⟼ DatExpDen 
Stre : TraExp  ⟼ TraExpDen 
Ste : TypExp ⟼ TypExpDen 

                                                 
16 The metavariable running over valuations is “vat” since “val” has been reserved for values.  
17 The domains Procedure and Function are defined in Sec. 5.4 
18 Functional procedures may loop indefinitely and since this is not a computable property we cannot 
expect to have an error message in that case. 
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4.4 Data expressions 
Data expressions evaluate to composites or errors. With every operation on data, we associate 
two constructors: of data-expression denotations and of data expressions. In this way, we define 
two mutually similar algebras and a homomorphism between them. This homomorphism is 
unique, is implicit in the definitions of both algebras and constitutes the semantics of data ex-
pressions. This section contains just one example of a syntactic constructor and of the corre-
sponding semantic clause.  

Consider the data operation of the numeric division divide and its syntactic counterpart “/”. 
The clause of our grammar (Sec.2.3) that corresponds to the syntactic constructor is 

(DatExp / DatExp) 

In the sequel instead of dealing directly with grammatical clauses, I shall write them in the form 
of a syntactic scheme. In the present case: 
(dae-1 / dae-2), 

where dae-1 and dae-2 are metavariables denoting data expressions. The corresponding 
clause of the definition of semantics is shown below. The syntactic argument is closed in square 
brackets. 

 

Sde.[(dae-1 / dae-2)].sta = 

 let 
  (env, (val, err)) = sta 
 err ≠ ‘OK’      err 
 Sde.[dae-i].sta = ?  ?          for i = 1,2 

 let 
  num-i = Sde.[dae-i]. (env, (val, err))     for i = 1,2 

 num-i : Error     num-i        for i = 1,2 
 let 
  (dat-i, bod-i) = num-i           for i = 1,2 
 bod-i ≠ (‘number’)   ‘number-expected’   for i = 1,2  
 dat-2 = 0      ‘division-by-zero’ 
 let 
  dat-3 = divide(dat-1, dat-2) 
 oversized.dat-3    ‘overflow’ 
 true        (dat-3, (‘number’)) 
 

In the above definition the clause   

Sde.[dae-i].sta = ?  ? for i = 1,2 

stands for 
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Sde.[dae-1].sta = ? 

Sde.[dae-2].sta = ? 

and analogously for all similar clauses. Intuitively our definition should be read as follows: 

• If the input state carries an error, then this error becomes the final result of the computa-
tion.  

• Otherwise, we evaluate both component expressions, and if one of these evaluations does 
not terminate, then (of course) the whole computation does not terminate. 

• Otherwise, we check the bodies of both resulting composites and if one of them is not 
(‘number’), then an appropriate error is generated. 

• Otherwise, we check if the second argument of the division is zero, in which case an 
error is generated. 

• Otherwise, we check if the result of the division is not oversized in which case an error 
is generated19.  

• Otherwise, the result of division becomes part of the resulting composite.  

4.5 Transfer expressions 
Transfer expressions evaluate to transfers or errors. Since transfers are not usual in program-
ming languages ― at least not as we define them ― a few examples may be in order. Below 
the “current composite” means the composite which is the (only) argument of the transfer. 
 

273 ― the resulting composite is (273, (‘number)) inde-
pendently of the current composite, 

record.price ― if the current composite carries a record with an attrib-
ute price, its body (‘number’) and its data dat, then 
the resulting composite is (dat, (‘number’)), and other-
wise is an error. 

all-list number ee ― this is a yoke; if the current composite does not carry a 
list, then an error is generated, otherwise, if it is a list of 
numbers then the resulting composite is (tt, (‘Bool-
ean’)), and otherwise, it is (ff, (‘Boolean’)), 

record.price +  
  record.vat < 1000 

― this is a yoke; if the current composite does not carry an 
appropriate record, then error and otherwise, if the sum 
of data assigned to price and vat is less than 1000, 
then (tt, (‘Boolean’)), and otherwise (ff, (‘Boolean)) 

 
Now let us consider a transfer expression with the asyntactic scheme 
all-list tre ee. 

                                                 
19 In our definitions this part of procedure is described in an abstract way, but the implementation does 
not need to preform it literarly, i.e. by first dividing the given numbers and only then checkig, if that was 
possible. In an implementation a programmable solution should be chosen. 
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Such an expressions is satisfied if all elements of a current list satisfy the transfer tre. The 
semantic clause is the following: 

Stre.[all-list tre ee].com =  

com : Error           com 
sort.com ≠ ‘L’          ‘list-expected’ 

let 
  ((dat-1,…,dat-n), (‘L’, bod)) = com       (list elements always have the same body) 
  com-i = Stre.[tre].(dat-i, bod)      for i = 1;n 

 com-i : Error          com-i  for i = 1;n 
 not com-i : BooComposite     ‘a-yoke-expected’ 
 (∀ i = 1;n) com-i = (tt, (‘Boolean’))  (tt, (‘Boolean’)) 
 true             (ff, (‘Boolean’)) 

This definition may be intuitively read as follows: 
1. If the current composite is an error, then the result is this error. 
2. Otherwise, if the current composite does not carry a list, then an error is signalized. 

3. Otherwise, the transfer Stre.[tre] is applied to composites created from the data dat-i of 
the list and the “internal body” bod of the list. Notice that lists carry data, rather than 
composites. 

4. If one of these composites is an error, then the first such an error is the result of the 
computation. 

5. If one of these composites is not a Boolean composite, then an error is generated. 

6. If all resulting composites are (tt, (‘Boolean’)), then the resulting composite is (tt, 
(‘Boolean’)), and otherwise, it is (ff, (‘Boolean’)). 

4.6 Type expressions 
Type expressions evaluate to types or errors. E.g., the denotation of the type expression: 
record-type 

Ch-name    as word, 

fa-name    as word, 

birth-year   as number, 

award-years  as number-array, 

salary    as number, 

bonus     as number 

ee 

is a function on states that creates a record type or generates an error. This expression refers to 
two built-in types word and number and one user-defined type number-array (arrays of 
numbers).  
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Now consider an example of a syntactic scheme of an expression that creates a one-attribute 
record type: 
record-type ide as tex ee 

where ide is an identifier and tex is a type expression. The corresponding semantic clause is 
the following: 

Ste.[ record-type ide as tex ee ].sta = 

 let 
  (env, (val, err)) = sta 
 err ≠ ‘OK’  err 
 let 
  typ = Ste.[tex]. sta 

 typ : Error  num-i 
 true    ((‘R’, [ide/typ]), TT) 

This clause is read as follows: 
1. If the input state carries an error, then this error becomes the result of the computation. 
2. Otherwise, we compute the type defined by tex, and if it is an error, then this error 

becomes the result of the computation. 

3. Otherwise, the resulting type is the record type ((‘R’, [ide/typ]), TT). 

To construct a many-attribute record type we use the operation of adding an attribute to a given 
record type with the following syntactic scheme: 
expand-record-type tex-1 at ide by tex-2 ee  

and to replace a current transfer of an arbitrary type defined by tex, by a new transfer tre,  
we use a type expression with a scheme: 
replace-transfer-in tex by tre ee 

4.7 The concrete syntax of expressions 
The full grammar of the syntax of expressions in shown in Sec.5.4.2 of [16][16]. Below only 
an excerpt of it: 

dae : DatExp =  
true | false | number | word | 

Identifier | (DatExp and DatExp) | (DatExp or DatExp) …|  

(DatExp + DatExp) | (DatExp / DatExp) | DatExp glue DatExp | 

list DatExp ee | push DatExp on DatExp ee | top(DatExp) | 
… 

if DatExp then DatExp else DatExp fi 

In the first line of this clause, the metavariables number and word represent the fact that all 
numbers and words up to a certain size are acceptable as expressions. At the level of 
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implementation, an appropriate lexical analyser is defined. The keyword glue corresponds to 
the concatenation of words. 

tre : TraExp = 
num | wor | (TraExp + TraExp) | (TraExp / TraExp) | 
sum (TraExp) | max (TraExp) | 
… 

tex :TypExp =  
 boolean | number | word | 

 Identifier |  list-type TypExp ee |  array-type TypExp ee | 

 record-type Identifier as TypExp ee  | 
… 

In the syntax of type expressions number and word denote themselves, i.e. the names of sim-
ple types.  

4.8 The colloquial syntax of expressions 
As was already explained, colloquial syntax includes all concrete syntax which means that the 
use of colloquialisms is optional. On the algebraic level, each colloquialism is a new construc-
tor, which makes the algebra of colloquial syntax not similar to the algebra of concrete syntax. 
Below three examples of colloquialisms described informally: 

1. x or y or z means (x or (y or z)) , 

2. x + y + z + x*y means (x + y) + z) + (x*z) 

3. array [x, x+y, 3*y] means 
add-to-arr 

add-to-arr  
array x ee 

new x+y ee 

new 3*y ee 

5 The imperative layer of the language 
Expressions of all types belong to an applicative layer of Lingua. Their denotations use states 
as arguments but neither create them nor change. The latter tasks are performed by instructions, 
variable declaration, procedure- and function declarations and by type definitions. All of them 
belong to an imperative layer of the language.  

5.1 Some auxiliary concepts 
Two new metapredicates are necessary to define the semantics of the imperative layer of our 
language.  
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The metapredicate  

is-error : State ⟼ {tt, ff} 
returns tt whenever a state carries an error.  

We say that body bod-1 is coherent with bod-2, in symbols 
bod-1 coherent bod-2 

whenever: 

1. bod-1 = bod-2 or 
2. they are record bodies, and one of them results from the other by adding or by removing 

an attribute. 
We also introduce an operator of inserting an error into a state: 

◄ : State ⟼ State 
(env, (vat, err)) ◄ error = (env, (vat, error)) 

5.2 Instructions 
Instructions change states, and therefore instruction denotations are partial functions from states 
to states: 

ind : InsDen = State → State 
The partiality results from the fact that the execution of an instruction may be infinite (an in-
struction may loop). The semantics of instructions is a function 

Sin : Instruction ⟼ InsDen 
Contrary to expression denotations which may generate an error, instruction denotations write 
an error into the error register of a state. The denotations of the majority of instructions are 
transparent relative to error-carrying states, i.e., they do not change such a state but only pass 
it to the subsequent parts of the program. However, an error may also cause an error-handling 
action (see Sec.6.1.8 of [16][16]). 

The basic instruction is, of course, an assignment of a value to a variable identifier. The 
syntactic scheme of an assignment is: 
ide := dae 

and the corresponding semantic clause is the following: 

Sin.[ide := dae].sta = 

is-error.sta         sta 
let 

((tye, pre), (vat, ‘OK’)) = sta 
 vat.ide = ?        sta ◄  ‘identifier-not-declared’ 

 Sde.[dae].sta = ?      ?               (an infinite execution) 

 Sde.[dae].sta : Error     sta ◄ Sde.[dae].sta  

let 
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((dat-f, bod-f), tra)  = vat.ide                     (f – former) 

(dat-n, bod-n)  = Sde.[dae].sta                   (n – new) 

  com      = tra.(dat-n, bod-n) 
 com : Error        sta ◄ com 
 not bod-n coherent bod-f   sta ◄ ‘no-coherence’ 

not com : BooComposite   sta ◄ ‘a-yoke-expected’ 
com = (ff, (‘Boolean’)     sta ◄ ‘yoke-not-satisfied’ 
let 

val-n = ((dat-n, bod-n), tra) 
true           ((tye, pre), (vat[ide/val-n], ‘OK’)) 

 
The denotation of an assignment changes an input state into an output state in nine steps: 

1. If an input state carries an error, then this state becomes the output state. 
2. Otherwise, if the identifier ide has not been declared, i.e., if no value or a pseudo value 

has been assigned to it in the valuation val, then an error message is loaded to the error 
register. 

3. Otherwise, if an attempt to evaluate the data expression leads to an infinite execution, 
then (of course) the executions of the instruction is infinite as well. 

4. Otherwise, if the expression evaluates to an error, then this error is loaded to the error 
register of the state. 

5. Otherwise, it the transit applied to the new composite returns an error, then this error is 
loaded to the error register. 

6. Otherwise, if the composite computed from the expression has a body non-coherent 
with the body of the identifier’s type, then an error is loaded to the error register. 

7. Otherwise, if the composite computed by the transit is not Boolean, i.e. if the transit was 
not a yoke, then an error is loaded to the error register. 

8. Otherwise, if the yoke is not satisfied, then an error message is loaded to the error reg-
ister. 

9. Otherwise, the new value is the new composite and the current (i.e. not changed) yoke, 
and this new value is assigned to the identifier ide. 

Notice that as a consequence of the claim 6. together with the definition of the coherence of 
bodies (Sec.5.1) an assignment may change the body of a value assigned to a variable only if 
this body is a record, and only by adding or by removing an attribute to/from that record.  

The remaining instructions belong to one of the following seven categories where the first 
four are atomic instructions, and the other three are structural instructions, i.e., instructions 
composed of other instructions and expressions: 

1. the replacement of a yoke assigned to a variable by another one  
yoke ide := tre, 
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2. the empty instruction  
skip, 

3. the call of an imperative procedure 
call ide (ref apar-r   val apar-v) 
where apar-r and apar-v are lists (maybe empty) of identifiers called respectively 
actual reference-parameters and actual value-parameters, 

4. the activation of an error-handling 
if dae then ins fi, 

5. the conditional composition of instructions 
if dae then ins-1 else ins-2 fi, 

6. the loop 
while dae do ins od, 

7. the sequence of instructions 
ins-1 ; ins-2. 

In the yoke-replacement instruction, the new value of the identifier ide gets the old composite 
but a new transfer. This transfer must be satisfied with the current composite20. 

The empty instruction skip is needed to make functional-procedure declarations suffi-
ciently universal; this will be seen in Sec.5.4.  

The discussion of procedures is postponed to Sec.5.4 
The error handling is activated if the current state carries an error, i.e. a word, that is equal 

to the word that the data-expression dae evaluates to. If this happens, the “internal” instruction 
ins is executed for a state that results from the initial state where the current error has been 
replaced by ‘OK’21.  

The semantics of the three remaining categories of instruction is usual with the exception 
that in the last two cases an expression may generate an error message. In such a case that error 
is stored in the error register of the state.  

5.3 Variable declarations and type definitions 
Variable-declaration denotations are total functions that map states into states: 

 vdd : VarDecDen = State ⟼  State 
assigning types to identifiers and leaving their data undefined, i.e. assigning pairs of the form 
(Ω, typ). The syntactic scheme of a single declaration is of the form: 
let ide be tex tel 

Variable declarations are similar to assignments with the difference that for a declaration an 
error ‘identifier-not-free’ is signalized whenever the identifier ide is bound in the input state. 
It means that a variable may be declared in a program only once. During program execution the 
value assigned to a variable may be changed only by changing: 

• the composite of the value by an assignment instruction, 

                                                 
20 This instruction has been introduced mainly for the sake of SQL tables discussed in [16]. 
21 For details see Sec.6.1.8 of [16]. 
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• the yoke of the value by a yoke-replacement. 
Type definitions are of the form 
 set ide as tex tes 

and their denotations are similar to those of variable declarations, i.e.  

tdd : TypDefDen = State ⟼  State 
with the difference that instead of assigning a pseudovalue to a variable identifier in a valuation 
they assign a type to a type-constant identifier in a type environment.  

An identifier that is bound to a type in a state is called a type constant. Notice that “a con-
stant” rather than “a variable” since a type once assigned to an identifier, cannot be changed in 
the future (an engineering decision). 

Similarly as in the case of assignments, also type definitions, and variable declarations may 
be combined sequentially using a semicolon constructor.  

5.4 Procedures 
Procedures in Lingua may be imperative or functional. The former are functions that take two 
lists of actual parameters ― value parameters and reference parameters ― and return partial 
functions on stores22. Functional procedures take only value parameters and return partial func-
tions from states to composites or errors:  

ipr  : ImpPro  = ActPar x ActPar ⟼ Store → Store  

fpr  : FunPro  = ActPar     ⟼ State → (Composite | Error) 
In these equations, ActPar is a domain of actual-parameter lists defined by the domain equa-
tion: 

apa : ActPar = () | Identifier | ActPar x ActPar 
As we see, actual-parameter lists are finite (maybe empty) sequences of identifiers. In turn, 
formal-parameter lists that appear in procedure declarations are finite (maybe empty) sequences 
of pairs consisting of an identifier and a type-expression denotations: 

fpa : ForPar = () | Identifier x TypExpDen | ForPar x ForPar 
Returning to procedures, notice that we do not talk here about “procedure denotations” but 
about “procedures” as such since they are purely denotational concepts. In other words, they do 
not have syntactic counterparts. At the level of syntax, we have only procedure declarations 
and procedure calls which, of course, have their denotations.  

A syntactic scheme of an imperative-procedure declaration is of the following form (the 
carriage returns are of course syntactically irrelevant): 

proc ide (ref fpar-r val fpar-v)  

pro  

end proc 

                                                 
22 The fact that procedures transform stores rather than states is a technique (introduced in [17]) that 
allows to define recursion in avoiding the selfapplication of procedures, i.e. a situations where a proce-
dure takes itself as an argument. Of course, procedure calls are instructions and therefore they trans-
form states into states.  
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where pro is a program (see later) and fpar-r and fpar-v are the lists of respectively 
formal reference-parameters and formal value-parameters. A syntactic example of a list of for-
mal parameters may be as follows:  
(val age, weight as number, name as word,  

  ref patient as patient-record)  

Expressions different from single-identifier-expressions are not allowed as value parameters 
since such a solution would complicate the model as well as program-construction rules (an 
engineering decision).  

If we want to declare a group of mutually recursive procedures, we use a multiprocedure 
declaration of the form: 

begin multiproc 

ipd-1; 

ipd-2; 

… 

ipd-n 

end multiproc 

where the ipd’s are imperative-procedure declarations. Intuitively this means that these pro-
cedure declarations have to be elaborated (compiled) “as a whole”, rather than one after another 
(details in Sec.7.4 of [16]).  

The syntactic scheme of a functional-procedure declaration is of the form : 
fun ide (fpar) 

pro 

return dae as tex 

A call of a functional procedure declared in this way first executes the program pro and then 
evaluates the data expression dae in the output state of the program. If the composite generated 
by that expression is of the type defined by the type expression tex, then this composite be-
comes the result of the call of the function. Otherwise, an error is signalized. 

In particular, the program in a functional-procedure declaration may be the trivial instruction 
skip ― which “does nothing” ― and the exporting expression may be a single identifier. 

The (concrete) syntactic schemes of an imperative-procedure call and a functional-procedure 
call are respectively: 
call ide (ref apar-r   val apar-v) ― imperative-procedure call 

ide (apar-v)           ― functional-procedure call 

Notice that the second call has no reference parameters since functional procedures do not have 
any side-effects ― they do not modify a state (an engineering decision).  

All types and procedures defined in the hosting program before (see Sec.5.4) the declaration 
of a procedure are visible in the body of this procedure, and therefore they do not need to be 
passed as parameters (an engineering decision).  

In the version of Lingua described in the present paper procedures cannot take other proce-
dures as parameters. However, it is shown in Sec. 7.6 of [16] how to construct a hierarchy of 
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procedures that can take procedures of lower rank as parameters. This construction protects 
procedures from taking themselves as parameters which would lead to non-denotational models 
(a mathematical decision).  

5.5 The execution of a procedure call 
In the descriptions of procedure mechanisms, we use some concepts having to do with the fact 
that procedures are created when they are declared and are executed when they are called. In 
respect to that, we shall talk about states (and their components) of a declaration-time and of a 
call-time respectively23. Traditionally by a procedure body, we mean the program that is exe-
cuted when a procedure is called. 

As has been already announced, there are no global variables in procedures (an engineering 
decision)24. The intention is that the head of a procedure-call describes explicitly and com-
pletely the communication mechanisms between a procedure and the hosting program. That 
solution may seem restrictive but ― in my opinion ― guarantees a better understanding of 
program functionality by programmers and definitely simplifies program-construction rulers.  

Execution of a procedure call may be intuitively split into four stages illustrated in Fig. 5.5-1. 
(formal definitions in Sec.7.3 of [16]). 

 

 
Fig. 5.5-1 The execution of a procedure call 

1. The inspection of an initial global state ― that state consists of: 

a. an initial global environment env-ig, 

b. an initial global store sto-ig = (vat-ig, err) 
If err ≠ ‘OK’, then the initial global state is returned by procedure call and therefore 
becomes the terminal global state. In the opposite case, an initial local state is cre-
ated. 

                                                 
23 These ideas, similarly to a few others, have been borrowed from M. Gordon [22] 
24 If we would like to introduced global variables, we should define the local store of a procedure call as 
a modification of its global store. 
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2. The creation of an initial local state ― that state consists of: 

a. initial local environment env-il created from the declaration-time environment 
by nesting in it the called procedure; this nesting is necessary to enable recursive 
calls, 

b. initial local valuation vat-il covering only formal parameters with assigned val-
ues of corresponding actual parameters; to get the latter values, we refer to initial 
global valuation val-ig. 

3. The transformation of the local initial state by executing the procedure body. If this 
execution terminates, then the local terminal state consists of: 

a. terminal local environment env-tl, 
b. terminal local store sto-tl = (val-tl, err-tl). 
If err-tl ≠ ‘OK’, then a global terminal state is created from the initial global-state by 
loading to it err-tl. Notice that in this case, the terminal local-environment and the 
terminal local store are “abandoned”. Otherwise, the terminal global state is created. 

4. The  creation of the terminal global state ― that state consists of: 

a. initial global environment env-ig; notice that terminal local environment env-tl 
is “abandoned”, 

b. terminal global store sto-tg created from initial global store sto-ig by ”return-
ing” to it the values of formal referential parameters (stored in sto-tl) and as-
signing them to the corresponding actual referential parameters.  

Notice that initial local environment “inherits” all types and procedures from the declaration-
time environment. Procedure body may use its own local environment types and procedures, 
but after the completion of the call, they cease to exist, since the hosting program returns to the 
initial global environment.  

It is to be underlined that the procedure body may access only that part of the environment 
which was created before the procedure declaration. 

Of a similar character is the local valuation that is created only in procedure execution-time, 
although in this case the values or reference-parameters stored in it are eventually returned to 
the terminal global valuation.  

Summarizing the visibility rules concerning procedure call: 
1. the only variables visible in procedure-body are formal parameters plus variables local 

to the body (declared in it), 
2. the only types and procedures visible in procedure-body are declaration-time types and 

procedures plus locally declared ones, 
3. variables, types and procedures declared in the procedure-body are not visible outside of 

procedure call. 
All these choices are not mathematical necessities but pragmatic engineering decisions dictated 
by the intention of making our model relatively simple which should contribute to the simplicity 
of program-construction rules and to a better understanding of programs by language-users. 

Procedures in Lingua may call themselves recursively either directly or indirectly. At the 
level of semantic clauses, this leads to recursive definitions of the denotations of procedure 
declarations. For formal definitions see Sec.7.3.2 in [16][16].  
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5.6 Preambles and programs 
Each program in Lingua consists of a preamble followed by an instruction. The syntactic 
scheme of a program is therefore of the form: 

begin-program pam ; ins end-program 

where pam is a preamble.  

Preambles are sequential compositions of type-constant definitions, data-variable declara-
tions and procedure declarations. Their syntax is defined by the following grammatical clause: 

pam : Preamble =  
ImpProDec | MultiProDec | FunProDec | TypDef  | VarDec | skip | 

Preamble ; Preamble 
Similarly to instructions also preambles contain skip which represent an identity state-to-state 
function. The semantics of programs and preambles are the following functions: 

Spr  : Program   ⟼ ProDen 

Spre : Preamble  ⟼ PreDen 
which are defined by structural induction: 

Spr.[pam ; ins] = Spre.[pam] ● Sin.[ins]  

and 

Spre.[ipd]       = Sipd.[ipd] 

Spre.[mpd]       = Smpd.[mpd] 

… 
Spre.[pam-1 ; pam-2] = Spre.[pam-1] ● Spre.[pam-2] 

Intuitively the clauses for preambles are read as follows: 

• the semantics of preambles applied to imperative-procedure declarations coincide with 
the semantics of such declarations, 

• the semantics of preambles applied to multi-procedure declarations coincide with the 
semantics of such declarations, 

• … 

• the denotation of a sequential composition of preambles is a sequential composition of 
their denotations. 

Programs with the trivial preamble skip — if executed “without a context” — will always 
generate an error, unless they (the programs) are the skip themselves. Such programs are al-
lowed because they may appear in procedure declarations as the bodies of procedures without 
locally declared objects. In turn, programs with trivial preambles and instructions are allowed 
in the declarations of functional procedures25.  

                                                 
25 Both these solutions, although in a slightly different form, have been suggested to me by Andrzej 
Tarlecki.  
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5.7 The carriers of our algebra of denotations 
These carriers are listed below. For each of them there is a corresponding carrier in the algebra 
of syntax. 

ide : Identifier                          (identifiers) 

ded  : DatExpDen   = State → CompositeE    (data-expression denotations) 
tra  : TraExpDen   = Transfer         (transfer-expression denotations) 
ted : TypExpDen   = State ⟼ TypeE           (type-expression denotations) 
vdd : VarDecDen   = State ⟼ State          (variable-declaration denotations) 

tdd   : TypDefDen   = State ⟼ State                  (type-constant denotations) 

ind   : InsDen     = State → State             (instruction denotations) 

fpa : ForPar    = (Identifier x TypExpDen)c*         (formal parameters) 
apa : ActPar    = Identifierc*                (actual parameters) 

ipc  : IprComponents = Identifier x ForPar x ForPar x ProDen       
                      (imperative-procedure components) 

cmp : MprComponents = IprComponentsc+        (multiprocedure components) 
ffc  : FprComponents = Identifier x ForPar x ProDen x DatExpDen x TypExpDen 

                       (functional procedure components) 

idd : IprDecDen   = State ⟼ State  
  (imperative-procedure-declarations denotations) 

mpd : MulProDecDen  = State ⟼ State    (multiprocedure-declarations denotations)  

fdd : FprDecDen   = State ⟼ State      (function-declaration denotations) 

pde  : PreDen     = State → State             (preamble denotations) 

prd   : ProDen    = State → State           (program denotations) 

6 Lingua-SQL 

6.1 General assumptions about the model 
The denotational model of Lingua-SQL is built as an extension of the model of Lingua by 
adding: 

1. new data domains corresponding of databases, tables, rows, and specific SQL-data, 
2. new constructors defined on these domains. 

6.2 Data, bodies and composites  
So far values in Lingua consisted of a composite and a transfer. This principle is kept in Lin-
gua-SQL for values carrying simple data, rows and tables but in the case of databases, values 
are records of tables supplemented by graphs of subordination relations (Sec. 6.6). 
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In Lingua-SQL lists, records and arrays do not carry rows, tables and databases and table 
fields do not contain lists, records and arrays. On the other hand, the extended repertoire of 
simple SQL values is available for the constructors of lists, records and arrays. 

Simple data which are new in Lingua-SQL are associated with time, i.e. with calendars and 
clocks: 

dat : Date    = Year x Month x Day 
tim : Time    = Hour x Minute x Second 
dti  : DateTime  = Date x Time 

where Year, Month, Day, Hour, Minute and Second are defined as finite sets of numbers in 
an obvious way. Since simple data play a special role in SQL, we need a domain of such data: 

sda : SimData = Boolean | Number | Word | Date | Time | DateTime | {ϴ} 
All former constructors with simple data as arguments ― e.g. that add a new attribute to a 
record ― are extended in an obvious way to the new domain.  

To include rows and tables with empty fields in our model, we introduce an empty data ϴ26. 
This data will never appear as a value of an expression and will never be assigned to a variable.  

With the extended set of simple data, we can extend the set of corresponding operations, e.g. 
by allowing to add a number to a date. I do not define such operations explicitly assuming that 
their class is a parameter of our model.  

The subcategories of numbers such as INTEGER, SMALLINT, BIGINT, DECIMAL(p, s), 
or of words CHARACTER(n), CHARACTER VARYING(n), BLOB, will correspond to 
yokes rather than to types.  

As was already announced we introduce two new sorts of structural data: 

row : Row   = Identifier ⟹ SimData 
tab : Table  = Rowc* 

At the level of domain equations, tables may contain rows of different length and different 
attributes. However, such tables will not be reachable in the algebra of composites.  

Data bases do not appear at the level of data. They are defined only at the level of values 
(Sec.6.6). 

Similarly, as in Lingua, all SQL data have corresponding bodies. The bodies of new simple 
data are defined as one-element tuples of words, hence: 

sbo : SimBody = {(‘Boolean’), (“number’), (‘word’), (‘date’), (‘time’), (date-time’)} 
The bodies of new structural data are defined by the equations: 

bod : RowBody = {‘Rq’} x RowRec  
ror   : RowRec = Identifier ⟹ SimBody 
bod : TabBody = {‘Tq’} x Row x RowBody 

As one can guess from these definitions, the composites of rows in a table will have a common 
body. The row contained in a table body carries the information about default data for columns. 

                                                 
26 Notice that ϴ, which is assignable to fields of rows and tables, is different from Ω which is assigned 
to a variable at the declaration-time.  
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Its list of attributes must coincide with the list of the attributes of the corresponding row body. 
This property will be insured by table-body constructors. 

The domain BodyE is extended by new simple bodies and the bodies of rows and tables. 

The function CLAN-Bo from Lingua is extended in an obvious way on row bodies. In the 
case of table bodies, we assume that each row of a table must have an appropriate record struc-
ture and that in each field with a non-empty default value there is a non-empty value. Of course, 
it does not need to be a default value. The latter are used when adding to a table a new row or 
a new column.  

We assume that the empty table ― a table with an empty tuple of rows ― belongs to the 
clan of every table body.  

The domain CompositeE is appropriately extended by composites associated with new sim-
ple data, row data, and table data. Additionally, we introduce an auxiliary domain of simple 
composites: 

com : SimCom = {(dat, bod) | (dat, bod) : CompositeE and bod : SimBody} 
and we also assume that (ϴ, bod) is a composite for every simple bod. 

6.3 The subordination of tables 
Subordination relations describe the binary relationships that can hold between tables. Let then 
A and B be tables and let ide be an attribute that appears in both of them. Let A.ide and B.ide 
be the corresponding columns in these tables.  

We say that A is subordinate to B at ide or that A is a child and B is a parent, that we write 
as 

A sub[ide] B 
if the following three conditions are satisfied: 

1. an ide-column appears in both tables; the identifier ide is called the subordination in-
dicator, 

2. the column B.ide is repetition-free, 

3. the column A.ide contains only the data that appear in B.ide 
The points 2. and 3. together mean that each row of A unambiguously points to a row in B. By 
a subordination graph we mean any finite set of triples of identifiers: 

sgr : SubGra = Sub.(Identifier x Identifier x Identifier)27 
Each tuple (ide-c, ide, ide-p) in sgr is called an edge of the subordination graph, where ide-c 
(child) and ide-p (parent) play the role of graph nodes, and ide is a label of the edge. In the 
context of a given state, each edge expresses the fact that a subordination relation holds between 
the tables named ide-c and ide-p where ide is the subordination indicator.  

About the subordination graphs, we assume only that ide-c ≠ ide-p, although such graphs 
may contain cycles. Notice also that there may be many edges starting in one node (one child 
may have many parents), and many edges may end in one node (many children may have a 
common parent).  

                                                 
27 Notice that since the set Identifier is finite, each subordination graph is finite as well. 
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6.4 Transfers 
Types ― as we understand them in this paper ― are mentioned in SQL-manuals only in the 
context of simple data and even in that case in a very unclear and incomplete way. The types 
of tables are implicit in table declarations, and the types of rows, columns and databases are 
totally absent. In table declarations, the descriptions of bodies are mixed with the description 
of yokes, and with database instructions, and are called integrity constraints. 

Unfortunately, in none of the known to me SQL manuals (their list is given in the preamble 
to Sec.11 of [16][16]), I have found a complete description of integrity constraints. Although 
all of them have a certain common part, besides that part, each manual offers different ideas. In 
this situation, I decided to construct such a model of SQL types that would cover a “sufficiently 
large” spectrum of types that appear in SQL applications. 

Since in Lingua-SQL there are no database composites, there will not be database transfers 
either. The properties of databases will be described by: 

• the yokes referring to their tables, 

• subordination graphs which are only seen at the level of values. 
We assume that in Lingua-SQL we have all so-far-defined transfer-constructors, and in partic-
ular ― Boolean constructors. New constructors will generate transfers on new simple compo-
sites ― these are regard as the parameters of our model ― plus row- and table-transfers. 

The row transfers are analogous to record transfers of Lingua. Table transfers split into two 
classes.  

The first contains quantified table-yokes which describe table properties by row yokes that 
should be satisfied for all rows of a table.  

Notice that although quantified table-yokes express properties of table-rows explicitly, they 
express implicitly ― due to quantifiers ― some properties of columns, such as, e.g., that each 
element of a column is a number. This technique does not allow, however, to express properties 
of columns regarded as a whole, e.g. that a column is ordered or that it does not contain repeti-
tions. To express such properties, we need special column-dedicated yoke constructors. Here is 
one example of such a constructor: 

 

no-repetitions-tb : Identifier ⟼ Transfer 
no-repetitions-tb.ide.com = 
 com : Error    com 
 sort.com ≠ ‘Tq’   ‘table-expected’ 

let 
  col = Cc[get-co-from-tb].(ide, com)  

col : Error     col 
true       no-repetitions.col 

 

We create a tuple of composites col which represents the column of the attribute ide, and then 
we check if this tuple satisfies a universal predicate no-repetitions. The created column does 
not contain the element that corresponds to the row of default values. 
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Since we have Boolean constructors among the constructors of yokes, we can use them to 
construct yokes that express properties of several columns of a table and all of its rows. Notice 
that contrary to the SQL standard the properties of columns and rows may be combined by 
arbitrary Boolean constructor rather than by conjunction only28. 

6.5 Types 
The algebra of types of Lingua-SQL contains four carriers: 

• Identifier 

• Transfer 

• CompositeE 

• TypeE 
and besides the constructors already defined for Lingua contain three groups of new construc-
tors: 

1. new transfer constructors (Sec.6.4), 
2. selected constructors of row composites needed to construct the rows of default values, 
3. three type constructors: of creating a one-attribute row, of adding an attribute to a row 

and of creating table type. 
Row types are created similarly as record types with the difference that now the added type 
must be simple. 

6.6 Database values 
Database values are defined as pairs consisting of an (intuitively understood) record of table 
values and a subordination graph (Sec.6.3). About databases we assume additionally the fol-
lowing: 

• to make a database accessible in a program, its tables must be assigned to variable iden-
tifiers in the current valuation, 

• in every state its valuation carries tables of only one database; this database is called the 
active database.  

To describe this mechanism new notions are necessary. 
According to our assumptions we expand the current domain of simple values and we intro-

duce the domains of row values and table values: 

RowVal = {(com, tra) | sort.com = ‘Rq’ and tra.com = (tt, (‘Boolean’))} 
TabVal = {(com, tra) | sort.com = ‘Tq’ and tra.com = (tt, (‘Boolean’))} 

By a database record we mean a mapping that maps identifiers into table values: 

dbr : DatBasRec = Identifier ⟹ TabVal 
Of course, database records are not records in the sense of Sec.4.1, but only in a set-theoretic 
sense. 

                                                 
28 To say the truth I am not sure if such a generalisation has a practical value. 
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We say that a database record dbr satisfies the subordination relation identified by a subor-
dination graph sgr, in symbols  

dbr satisfies sgr, 
if for every edge  (ide-c, ide, ide-p) of the graph, the tables assigned to ide-c and ide-p are 
defined, i.e. 

(com-c, tra-c) = dbr.ide-c 
(com-p, tra-p) = dbr.ide-p 

and the subordination relation holds, i.e. 

com-c sub[ide] com-p 
By a database value we mean a pair consisting of a database record and a subordination graph 
that describes the subordination relations satisfied by that record: 

dbv : DbaVal = {(dbr, sgr) | dbr satisfies sgr} 
We may say that for database values, the role of a yoke is played by the predicate satisfies. 
Notice, however, that since a database record caries table values, the tables of the database 
satisfy their own yokes. 

6.7 States 
Similarly as in Lingua, states in Lingua-SQL bind values with variables and types with type 
constants. The general definitions of types and values remain as in Sec.4.2 except for database 
values (Sec. 6.6). Consequently, the values in Lingua-SQL, i.e., objects which may be assigned 
to variable identifiers are all the values of Lingua, and additionally the values that carry: 

1. simple SQL data, 
2. rows, 
3. tables, 
4. databases. 

Of course, database values are not values in the former sense of the word since they are not 
composed of a data and a type. The type of a database is implicit in the types of its tables and 
in the subordination graph. 

In every state several data bases may be stored, i.e. assigned to identifiers, but only one base 
may be active at a time, i.e. the tables of only one base may be assigned to identifiers in valua-
tions. 

For states I assume the existence of four system identifiers: 

sb-graph ― that binds the subordination graph of the active base in the environment, 
copies  ― that binds a finite sets of table names (identifiers) in the valuation, 

monitor  ― that binds one table in the valuations, (the table displayed on a monitor) 
check  ― that binds words ‘yes’ and ‘no’ in valuations. 

Their role will be explained later. So far we assume only that they cannot be used as identifiers 
of variables, of type constants and of procedures. The identifier check is called the security 
flag.  
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The signature of the algebra of denotations of Lingua-SQL is an extension of the signature 
of Lingua (Sec.5.7) by new constructors. The carriers change due to new SQL-values and SQL-
types. 

6.8 Denotations and their constructors 
The subalgebra of expression denotations of all types is analogous as in Lingua.  

At the level of state-to-state functions we have a new domain of transactions. Transactions, 
similarly to instructions, are state transformations but contrary to the former they are total func-
tions since they do not contain loops and procedure calls. Moreover, they do not create new 
tables but only modify the existing ones. Their domain is, therefore, the following: 

trd : TrnDen = State ⟼ State 
Transactions are regarded as a separate carrier of our the algebra of denotations to avoid the use 
of arbitrary table instructions in the contexts of transactions. 

The largest group of transactions are table modifications which in a traditional syntax could 
have the form: 
ide := table-expression(ide) 

where on both sides we have the same table named ide. Transactions include the mechanisms 
of creating and recovering security copies of databases. 

The carrier of instruction denotations is enriched with new constructors of specific SQL 
instructions of three categories; 

1. row assignments, 
2. table assignments, 
3. database instructions. 

All constructors of Lingua are still available and apply to the extended carrier of instruction 
denotations. This rule concerns, in particular, the constructor of transfer replacement and the 
constructors of structural instruction, i.e., sequential composition, branching and loop. The con-
structors of procedure declaration and procedure call remain unchanged as well, although now 
they are defined on extended domains.  

A particular role in SQL plays a large group of table assignments where we distinguish two 
categories: 

1. table-modification instruction where on both sides of the assignment we have the name 
of the same table; this group of instructions comprise the mechanisms known as CAS-
CADE and RESTRICT, 

2. table-creation instruction where on the left-hand side of the instruction we may have a 
different table name (of the table that is being created) than on the right-hand side. 

From a mathematical perspective the first category may be regarded as a particular case of the 
second, but denotationally they correspond to two different constructors of the algebra of de-
notations hence also to different constructors of the algebra of syntax.  

Independently of the described categorisation, table assignments are split into two further 
categories according to two ways of using subordination constraints both described in Sec. 11.5 
of [16][16]):  
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1. conformist instructions where an execution terminates with an error message whenever 
it would lead to a violation of subordination constraints; this category corresponds to 
the option RESTRICT, 

2. correcting instructions which in the described situation introduce such changes into a 
database that guarantee the protection of subordination constraints; this category corre-
sponds to the option CASCADE. 

Queries are similar to simple instructions with the difference that they always create a new table 
assigned to the system-identifier monitor. Consequently, we apply simplified assignments as-
sign-mo that never violates any constraints since the transfer of the new value is TT. 

Cursors are mechanisms used to get row-by-row from tables. In our model that can be easily 
defined, e.g. by adding a column to a table that enumerates its rows.  

Views are essentially procedures that call table instructions. They may be introduced to our 
model either as predefined instructions or by providing programming mechanisms of proce-
dures that operate on tables.  

Regarding data base instructions I assume that in Lingua-SQL an initial valuation of pro-
gram execution may carry some variables assigned to database values. I assume additionally 
that in every initial state of program execution, the system identifiers are bound to the following 
default values: 

tye.sb-graph  = Ø 
vat.copies  = Ø, 

vat.monitor = Ω               (interpreted as no data to be displayed) 
vat.check  = ‘yes’  

With these assumptions each database program in Lingua-SQL that operates on tables either 
has to create its own tables ― and a database thereof ― or to activate an already existing data-
base. In Lingua-SQL we have therefore only two database instructions that operate on tables 
― activate and archive ― and two that operate on subordination graphs, which add or remove 
an edge of a graph. 

6.9 An example of a colloquial syntax 
The colloquial syntax of Lingua-SQL should be as close as possible to SQL standard. Below 
just one example of restoring a standard table-variable declaration ― which in Lingua-SQL 
belongs to colloquial syntax ― into its corresponding concrete-syntax form. 
create table Employees with 

 Name      Varchar(20)  NOT NULL, 

 Position     Varchar(9),  

 Salary     Number(5)   DEFAULT 0, 

 Bonus      Number(4)   DEFAULT 0, 

 Department_Id  Number(3)   REFERENCES Departments, 

CHECK (Bonus < Salary) 

ed 
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The restoring transformation would change this declaration into a sequence of a table-variable 
declaration followed by a database instruction of retting a subordination dependency between 
tables: 

create table Employees as typ_exp ed ; 

set reference of Employees et Department_Id to Departments ei 

where typ_exp is a metavariable that represents a type expression: 

table-type dat_exp with tra_exp ee 

In this scheme the data expression dat_exp defines data that stand in the row of default data 
which in fact means that it generates this row. In turn the transfer expression tra_exp describes 
the properties of columns and rows. The table-variable declaration has then the form: 

 create table Employees as  

table-type dat_exp with tra_exp ee  
ed 

Unfolding the data expression by means of row-creation and row-expansion constructors and 
unfolding the transfer expression with transfer-expression constructors we get the following 
concrete version of our colloquial declaration: 

create table Employees as         (the beginning of the declaration) 

 table-type             (the beginning of type expression) 

 expand-row            (the beginning of data expression) 
expand-row  

expand-row 

 expand-row 

row Name val empty-word ee 

by Position val empty-word ee 

by Salary val 0 ee 

by Bonus val 0 ee 

  by Department_Id by empty-number ee   (the end of data expression) 

 with          (the beginning of transfer expression yoke expression) 
 all   

varchar(20)(row.Name)     and 

not-null(row.Name)       and   

varchar(9)(row.Position)    and  

 number(5)(row.Salary)     and 

 number(4)(row.Bonus)      and 

 number(3)(row.Department_Id) and 
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row.Bonus < row.Salary 

ee            (the end of transfer expression (yoke expression) 

ee                    (the end of type expression) 
ed ;                     (the end of declaration) 
set reference of Employees et Department_Id to Departments ei 

Of course varchar(20), varchar(9),… are the names of appropriate predicates. Notice 
that in this example one “syntax unite” from the colloquial level is transformed into a sequential 
composition of a declaration with an instruction. 

6.10 Remarks about a possible implementation of Lingua-SQL 
Typical Application Programming Interfaces (API) for SQL have been created for program-
ming languages such as e.g. C, PHP, Perl, and Phyton. Each of these programming environ-
ments constitutes a programming language equipped with the mechanisms that allow to run 
procedures of a certain existing database-engine. In the case of Lingua-SQL, such a situation 
would not be acceptable. Our language must be based on a dedicated SQL-engine with a deno-
tational model, and in the future, maybe, with a dedicated implementation. Such an approach is 
necessary, if we want to provide sound program-construction rules for Lingua-SQL. 

7   What remains to be done 
Even though [16] is already of a considerable size, the majority of subjects has been only 
sketched. Below a preliminary list of subjects which could be developed further. This list is 
certainly not complete.  

7.1 The development of Lingua 
1. An extension of Lingua to some “practical” language, say Lingua-α, where preliminary 

programming experiments could be performed. Such a language should cover in partic-
ular: 
1.1. The mechanisms of object programming which in [16] have been only sketched in 

Sec.9. 
1.2. Some more specific data types, e.g. trees that in the Polish version of [16] have been 

sketched in Annex 1. 
1.3. The enrichment of SQL mechanisms. 
1.4. The elaboration of HTML scripts. 

2. The development of tools for correct-programs’ development in Lingua-α: 
2.1. The extension of the languages of conditions and thesis sketched in Sec.8 of [16]. 
2.2. Sound program-construction rules for the extended language. 

3. A user manual for Lingua-α. This task could also contribute to a methodology of writ-
ing programmer’s manuals for languages with denotational semantics29.  

                                                 
29 Denotational models should provide an opportunity for the revision of current practices seen in the 
manuals of programming languages. New practices should on one hand base on denotational models 
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4. A programmer’s environment for Lingua-α: 
4.1. An interpreter or a compiler. To make this interpreter/compiler maximally inde-

pendent of possible errors in the language used to build it, some basic core could be 
coded in such a language (e.g. in Python), and the remaining part may be written 
using this basic core. This could also be the first experiment in using our language. 

4.2. An editor of programs supporting the construction of correct programs with the use 
of earlier developed program construction rules (see 2.2) 

4.3. An adaptation of an existing theorem prover for proving metaconditions (the prop-
erties of conditions) described in Sec. 8.4.2 of [16] which is necessary for the use of 
program-construction rules. 

5. Preliminary experiments with programming in Lingua-α: 
5.1. Microprograms due to their relatively small volume and a very critical correctness 

issue. 
5.2. Simple SQL applications due to the availability of tools. 

This is, of course, only a preliminary sketch of a project which — in the case of realizations — 
would probably be modified and further developed. 

7.2 The development of a software environment for language 
designers 

Such an environment should consist of: 
1. An editor of the definitions of denotations’ constructors. 
2. A generator of the grammar of abstract syntax from such definitions. 
3. An editor supporting language designers in developing concrete-syntax grammar from 

abstract syntax grammars. 
4. An editor/generator of a transformation restoring colloquial syntax to abstract syntax. 
5. A generator of a parser from colloquial syntax to abstract syntax. 
6. A generator of an interpreter of the language. 

If such an environment is created before Lingua-α, it could be used in the creation of that 
language. 

7.3 Two basic research problems 
Independently of the tasks mentioned above, two important research problems are worthy of 
consideration. 

                                                 
but on the other ― do not assume that todays’ readers are acquainted with it. A manual should pro-
vide some basic knowledge and notation needed to understand the definition of a programming lan-
guage written in a new style. At the same time ― I strongly believe on that ― it should be written for 
professional programmers rather than for amateurs. The role of a manual is not to teach the skills of 
programming. Such textbooks are, of course, necessary, but they should tell the readers what the pro-
gramming is about rather than the technicalities of a concrete language. An experiment in writing a 
user manual of Lingua is described in [15]. 
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The first concerns the extension of our model by the mechanisms of concurrency. Fully de-
notational models of concurrence are not known today, although there are some attempts to 
“semi-denotational” models of these mechanisms, as, e.g. in [2].  

The second problem has not been probably tackled at all and concerns the construction of 
semi-formal languages for the description of user-oriented specifications of programs. So far 
all approaches to program correctness — including mine — concentrate on the compatibility 
of program code with its formal specification. It does not exhaust the reliability problem in the 
IT industry, because many problems are due to poor communication between a designer of a 
system and its user. Most probably many area-oriented languages of specifications would be 
needed.  
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