
Science of Computer Programming 12 (1989) 207-253

North-Holland

207

DENOTATIONAL ENGINEERING*

Andrzej BLIKLE

Institute of Computer Science, Polish Academ_y qf Sciences, PKiN, P.O. Box 22, 00.901 Warsaw,

Poland

Communicated by C.B. Jones

Received August 1988

Revised February 1989

Abstract. This paper is devoted to the methodology of using denotational techniques in software

design. Since denotations describe the essential components comprising a system and syntax

provides ways for the user to access and communicate with these components, we suggest that

denotations be developed in the first place and that syntax be derived from them later. That

viewpoint is opposite to the traditional (descriptive) style where denotational techniques are used

in assigning a meaning to some earlier defined syntax. Our methodology is discussed on an

algebraic ground where both denotations and syntax constitute many-sorted algebras and where

denotational semantics is a homomorphism between them. On that ground the construction of a

denotational model of a software system may be regarded as a derivation of a sequence of algebras.

We discuss some mathematical techniques which may support that process especially this part

where syntax is derived from denotations. The suggested methodology is illustrated on two small

examples.

The authors have the peculiar idea that domains of

our concept.s can be quite rigorous!)’ laid out before we

make thejnal choice of the language in which we are

going to describe these concepts. (.) What we suggest

is that in order to sort out your idear, you put your

domains on the table jirst.

Scott and Strachey [28]

1. Introduction

Denotational semantics is most frequently understood as a method of assigning

meaning to syntax. It is implicit in such an understanding that syntax comes first

* Research reported in this paper contributes to project MetaSoft. Sections 1 to 7 are extensively

revised versions of the corresponding sections in earlier papers [7, 81. The approach to the representation

of algebras by grammars has been significantly simplified.

0167.6423/89/$3.50 0 1989, Elsevier Science Publishers B.V. (North-Holland)

208 A. B/ikle

into the play and that semantics is assigned to it later. In classical textbooks on

denotational semantics (such as Stoy [29] or Gordon [17]) or in the monographs

devoted to applications (e.g. Bjorner and Oest [4] or Bjorner and Jones [3]) the

construction of a denotational model of a software system is regarded as a four-step

process:

- first we describe a concrete syntax of the system,
- then we derive a corresponding abstract syntax,

- next we define the domains of denotations,

- finally we assign denotations to syntax.

The way in which that process is organized is typical to the case where denotational

techniques are used in formalizing the definitions of existing programming languages.

In that case concrete syntax is always given ahead and what remains to be done is

to formally define the semantics.

Giving formal definitions to existing programming languages was the first

practical problem tackled on the ground of denotational semantics. Since the early

experiment with ALGOL-60 (Mosses [24]), many programming languages have been

formalized on that ground, frequently in supporting a later compiler writing (e.g.

[4]). On the other hand, the formalization of existing software is not a goal in itself.

From the very beginning denotational semantics has been aimed primarily as a tool

for the development of new software.

This paper is devoted to studying the methodology of using denotational tech-

niques in software design. By “software” we mean any complex software system,

which includes but is not restricted to programming languages. Since denotations

describe the essential components comprising a system and syntax provides ways

for the user to access and communicate with these components, we suggest that

denotations be developed in the first place and that syntax be derived from them

later. More precisely, we suggest that the development of a denotational model of

a software system be organized in four following steps:

(1) We develop a mathematical model of the mechanisms of the future system.

We define the objects which are to be manipulated by the system (numbers, strings

of characters, databases, spreadsheets, etc.) and the corresponding operations. We

also define facilities which are offered by a computer environment such as storing

and restrieving data in computer memory, combining single operations into pro-

grams, etc.

(2) Among the mechanisms defined in the first step we select these which are to

be accessible to the user.

(3) We define a prototype syntax for the part of the system defined in the second

step.

(4) We modify the prototype syntax in making it more user-friendly.

Of course, each of these steps splits into several substeps.

Denotational engineering 209

As a mathematical framework for our discussion we have chosen an algebraic

model advocated in early ADJ’s papers (cf. Goguen, Thatcher, Wagner and Wright

[16]). In that model a software system is described by two many-sorted algebras:

Syn of syntax and Den of denotations. A homomorphism between them:

S:Syn+Den (1.1)

represents the denotational semantics of Syn in Den. The fact that S is a homomorph-

ism reflects the compositionality property of our semantics. The carriers of Syn and

Den, i.e. the syntactic domains and the domains of denotations, are constructed on

the usual set theory (cf. Blikle and Tarlecki [lo], Blikle [6,9]), rather than as Scott’s

reflexive domains.

The idea of developing denotations prior to syntax is, of course, not new. It has

been suggested, although never explored, by the pioneers of denotational semantics,

and is implicit in all schools of algebraic semantics. Similar ideas may be found

also in action semantics (Mosses and Watt [25]) which offers a support in the

derivation of the algebras of denotations. Finally, in some textbooks on denotational

semantics, such as [27], it is advocated that a denotational model of a programming

language be organized around a set of semantic algebras. The author has spelled

out his ideas for the first time in [5].

One of the major aims of this paper is to systematize the development of the

denotational models of software. This is achieved by splitting the development

process into several steps where in each step we develop a certain algebra. Although

it is not essential for the method whether the successive algebras are described

axiomatically or constructively, in this paper we concentrate on the constructive

style. A special attention is also given to the problem of deriving (an algebra of) a

concrete syntax from an algebra of denotations. This leads to several technical

problems on the representation of the algebras of words by context-free grammars

and on the possibility of supporting such a derivation process by a computer.

In Sections 2 and 3 we recall basic algebraic concepts and we introduce a notation.

This should make our paper selfcontained for readers less familiar with many-sorted

algebras. In Section 4 we discuss the definability of the algebras of syntax by

context-free grammars. In Section 5 we briefly discuss the process of the construction

of an algebra of denotations. Section 6 is devoted to the derivation of syntax from

an algebra of denotations. Section 7 contains a list of open problems related to the

derivation of syntax. In Section 8 we illustrate our method by showing how to

develop a denotational model of a simple wordprocessor.

2. Introductory concepts

In this section we introduce a notation and we recall basic algebraic concepts.

Our notation is a dialect of META-IV (the metalanguage of VDM [3]) and has been

thoroughly described in [6].

210 A. Blikle

For any sets A and B:

AIB
A+B
A-B
A+,B

A’*

denotes the union of A and B,
denotes the set of all total functions from A into B,

denotes the set of all partial functions from A into B,
denotes the set of all finite-domain functions, called mappings

from A into B,
denotes the set of all finite tuples (a,, . . . , a,) over A including

the empty tuple (),

A’+ denotes A’* without the empty tuple (),

A-set denotes the set of all subsets of A,
A-finset denotes the set of all finite subsets of A.

BY “l” we denote the operation of concatenation both for single tuples and for

languages. If L is a language, i.e. if LC A’* for some A, then L* denotes the usual

Kleene-iteration of L. Observe that “c*” is applicable to any set whereas “*” is

applicable only to languages. Moreover (A’*)* = A” is the set of tuples of the

elements of A, whereas (A’*)‘* is a set of such tuples whose elements are the tuples

of the elements of A.
From Tennent [30] we borrow a convention of writing domain equations in the

form:

d : D = (domain expression)

by which we mean that d possibly with indices denotes an element of domain D.
For indexed families {A,}i,, we use alternatively the notation {A.i 1 i E I}.

By f:A+B,f:AsB orf:A+, B we denote the fact that f is respectively a

total function, a partial function, or a mapping from A to B. For curried functions

likef:A+(B+(C+D)) wewritef:A + B+ C+ D. We also writefa forfja) and

ja.b.c for (($u).~).c. For uniformity reasons each many-argument noncurried func-

tion is regarded as a one-argument function on tuples. Consequently we write

$(a,, . . . , a,) for f(u,, . , a,). Formally this should have led us to writing t(a)

rather than $a, but we keep the latter notation as more natural and simpler. If

f:A-_,B and g:BsC, thenf.g:AqC where

f. g={(u, ~)~(3b)(jIu=b&g.b=c)}.

In the definitions of functions we frequently use conditional expressions of the form

b + c, d which stand for

if b then c else d.

This may be iterated in which case the expression

b, + (a,, (b-f. . .(b, + a,,, a,+,). . .I)

Denotational engineering 211

is written in a column:

bn + 4,

TRUE + a,,, I

Sometimes in conditional expressions we shall nest “local constant declarations”

of the form let x = exp, in exp, borrowed from VDM. The scope of such a declaration

is the expression expz.

For any partial functionf: A G B, by f [b/u] where a E A, b E B andf[b/u] : A 1: B

we denote the following modification off:

f [b/a].x = x = a + b,Jx.

BY [h/a,, . . . > b,/a,] we denote a mapping which assigns b, to ai for i = 1, . , n.

Now we shall briefly recall some basic concepts associated with many-sorted

algebras. We also fix our notation. By a Signature we mean a four-tuple:

Sig = (Sn, Fn, sort, a&y),

where Sn is a nonempty possibly infinite set of sort names, Fn is a nonempty possibly

infinite set of function names and where

sort : Fn + Sn,

arity : Fn + Sn’*

are functions which associate sorts and arities to function names. By an algebra

over the signature Sig, or shortly by a Sig-algebra, we mean a triple Alg=

(Sig, car,fun) where cur and fun are functions interpreting sort names as nonempty

sets and function names as total functions on these sets. More precisely, for any

sn E Sn, car.sn is a set called the carrier of sort sn, and for any fi E Fn with sort.fn = sn

and arity.fn = (sn, , . . . , sn,), fun.fn is a total function between corresponding

carriers, i.e.

fun.fn : car.sn, x . . . X car.sn, + car.sn.

If arity.fn = (), then fun.fn is a zero-ary function, i.e. accepts only the empty tuple

“()” as an argument. The fact thatf is a zero-ary function with value in A is denoted

by f: + A and the unique value off is denoted by j(). Zero-ary functions are also

called algebraic constants.

In applications we frequently do not define the signature of an algebra explicitly.

As long as we do not talk about the derivation of syntax, a signature usually remains

implicit in the definitions of the carriers and the operations of the algebra. Consider

as an example a two-sorted algebra of integers and booleans with the carriers

212 A. Bli!de

IN={ . ..) -l,O,l,. . .} and Boo/ = { tt,ff} and with the following operations:

I:+ Int an integer constant “one”,

+: Int X Int + Int an integer operation of addition,

tt : + Boo1 a boolean constant “true”,

< : Int x Int + Boo1 an integer-to-boolean function “less than”,

- : Boo1 + Boo1 a boolean function “not”.

The signature of this algebra is implicit (up to the choice of the names of sorts and

functions) in the above description. For instance we may choose:

Sn = { int, bool}, Fn = {one, plus, true, less, not},

in which case the functions of sort and arity are defined as follows:

arity.one = (),

arity.plus = (int, int),

etc.

sort.one = int,

sort.plus = int,

Now, our algebra may be more formally defined as Arith = (Sig, car,fun), where

Sig has been defined above and where:

car.int = Int,

car. boo1 = Bool,

etc.

fun.one = 1,

fun.plus = f,

Two algebras with the same signature are called similar. If Alg, = (Sig, car,,fun,)

for i = 1,2 are two similar algebras, then we say that Alg, is a subalgebra of Alg,
if for any sn E Sn,

car,.sn C car2.sn

and for any fn E Fn, fun,.fn coincides with jiun,.fn on the appropriate carriers of

Alg,, i.e. if the restriction of fuq.fn to the carriers of Alg, is identical to fun,.fn.

By a homomorphism from Alg, (a source algebra) into Alg, (a target algebra) we

mean a higher-order function H which with any sort sn E Sn assigns a function:

(1) H.sn : car,.sn + car2.sn (2.1)

such that for any fn E Fn with sort.fn = sn:

(2) if arity.fn = (), then

H.sn.(fun,.fn.()) = fun&z.(),

(3) if arity.fn = (sn, , . . . , sn,) with n > 0, then for any tuple

of arguments (a,, . . . , a,) E car.sn, x . . . x car.sn, we have

H.sn.(fun,.fn.(a,, . . . , a,)) =fun,.fn.(H.sn,.a,, . . , H.sn,.a,).

Denotational engineering 213

If all the component functions H.sn are onto-functions, then H is called an

onto-homomorphism. Otherwise it is called a strictly into-homomorphism. If each

component of a onto-homomorphism H is reversible, then H is called an isomorph-

ism. The componentwise reverse of H is then denoted by HP’. All the elements of

Alg, which are the images of some elements from Alg, through H constitute a

subalgebra of Alg, called the image of Alg, .

By H : Alg, + Alg, we denote the fact that H is a homomorphism from Alg, into

Alg,. If

H,z: Alg, -t Alg, and HI3 : Algz + Alg, ,

then H,, . Hz3 = { H,,.sn . H,,.sn 1 sn E Sn} is a homomorphism from Alg, into Alg,.

As we already mentioned before the signature of an algebra may constitute a

basis for the construction of a language (syntax) of expressions over that algebra.

Starting from a signature Sig = (Sn, Fn, sort, arity) we construct the least family

{car,.sn 1 sn E Sn} of formal languages of terms over the alphabet Fn I{(,), “, “} such

that for any sn E Sn and any fn with sort.fn = sn:

(1) if arity.fn = (), then .fn E car,.sn,

(2) if arity.fn = (sn,, . . . , sn,), then for any terms

ter, E car,.sn,, ,fn^(^ter,*, A . . . A, *terNA) E car,.sn,

where “*” denotes the concatenation of terms. If all the sets car,.sn are not empty,

then we may define a so-called Sig-algebra of terms:

Term = (Sig, cur,, fun,),

where the operations are defined as follows: for any fn with sort.fn = sn

(1) if arity.fn = (), then fkn,.fn.() = fn,

(2) if arity.fn = (97, , . . . , sn,,) and ter, E car,.sq, then,

fun,.j‘n.(ter, , . . . , ter,) = fnA(&terIA, A. . . *, *ter, A).

For instance, in the case of the algebra Arith we have:

car,.int = {one, plus(one, one), plus(one, plus(one, one)), . . .>,

cur,. boo1 = {true, not(true), less(one, one), . . .},

fun,.plus.(plus(one, one), one) = plus(plus(one, one), one),

etc.

(2.2)

The algebra Term over Sig is a so-called initial algebra of terms. It constitutes a

universal language of expressions for the class of all Sig-algebras. Formally, for any

Sig-algebra Alg = (Sig, car, fun) there exists exactly one homomorphism

T: Term + Alg.

This homomorphism represents the semantics of Term in Alg and is called the

canonical term-homomorphism for Alg. It maps terms into their corresponding values

214 A. Blikle

in Alg and is defined in the following way:

(1) for any primitive term fn with sovt.fn = sn and arity.fn = ()

Tsn.fn =fun.fn.(),

(2) for any compound term fn(ter, , . . . , ter,), where sort.fn = sn and

arity.fn = (sn, , . . . , sn,),

Tsn.fn(ter, , . . . , ter,) =fun.fn.(T.sn,.ter,, . . . , T.sn,.ter,).

E.g. in Arith we have:

T.int.one = 1,

T.int.plus(one, one) = 2,

T.bool.less(one, one)=fJ;

etc.

(2.3)

Observe that the definition of T is an instance of the general definition (2.1) of a

homomorphism. This implies that T is indeed a homomorphism. On the other hand,

since any homomorphism from Term into Alg must satisfy (2.3) and since these

equations define T unambiguously, T is the unique homomorphism between our

algebras.

Let Sig, = (Sq, Fn,, sort,, arity,) for i = 1,2 be two arbitrary signatures and let

Alg, = (Sig,, car,,fun,) be two algebras over these signatures. We say that:

(a) Sigz is an extension of Sig,, or Sig, is a restriction of Sig,, if Sn, C Sn,,

Fn, c Fnz and the functions sort, and arity, coincide with sort, and arity, on

Fn,

(b) Alg, is an extension of Alg, or Alg, is a restriction of AlgZ if:

(1) Sig, is an extension of Sig,,

(2) for any sn E Sn,, car,.sn c car,.sn,

(3) for any fn E Fn, , fun,.fn coincides with fun,.fn on appropriate carriers

of Alg, .

In other words, we extend an algebra if we add new carriers, new functions and

new elements.

3. Reachability, ambiguity and initiality

In general, not every element of an algebra is a value of a term. E.g. in Arith

terms of sort int assume only positive values, whereas car,.int contains all integers.

The elements of an algebra which are the values of some terms are called reachable

elements. Elements which are not reachable are referred to as the junk of an algebra.

For each sort the set of all reachable elements of that sort is called the reachable

carrier of that sort.

As is easy to see, an element is reachable in an algebra Alg if and only if it can

be constructed from the constants of Alg in using the operations of Alg. This

Denotational engineering 215

immediately implies that reachable carriers are always closed under all the operations

(functions) of Alg and therefore, if none are empty, they constitute the least

subalgebra of Alg. We call this subalgebra the reachable subalgebra of Alg and

denote it by AlgR. If Alg and AlgR are equal, then Alg is called a reachable algebra.

Reachable algebras play a very important role in our applications. In particular

the algebras of syntax Syn (cf. (1.1)) are always reachable since syntax is always

defined in a constructive way. Below we recall some important properties of reach-

able algebras.

Proposition 3.1. The following properties are equivalent:

(1) Alg is reachable,

(2) the (unique) evaluating homomorphism T: Term + Alg is onto,

(3) any homomorphism which has Alg as a target is onto.

Proposition 3.2. If Alg, and Alg, are similar and if Alg, is reachable, then there

exists at most one homomorphism:

H : Alg, + Alg,.

If that homomorphism exists, then the image of Alg, in AlgZ is reachable.

Since this proposition plays an especially significant role in our applications we

show its proof.

Proof. Let Term be the common algebra of terms of both algebras and let T, and

T, be the unique corresponding homomorphisms (Fig. 1). If H exists, then T, . H

is a homomorphism from Term into Alg, and since Tz is a unique such homomorph-

ism the following equation must hold:

T, . H = T,. (3.1)

Therefore, since T, and T2 are unique and Alg, is reachable, H must be unique as

well. The reachability of the image of Alg, in Alg, also follows from (3.1). 0

Fig. 1

216 A. Blikle

In our applications the diagram of Fig. 1 usually represents a denotational model

of a software system where Alg, is an algebra of denotations, Alg, is a corresponding

algebra of (final concrete) syntax and Term is the algebra of prototype (abstract)

syntax (cf. Section 1). The homomorphism H represents the denotational semantics

of Alg, in Alg,.

So far we have noticed that between syntax and denotations there may be at most

one denotational semantics. Of course, there may also be none. Below we formulate

some conditions which guarantee the existence of a homomorphism between two

similar algebras.

We say that Alg, is not more ambiguous than Alg,, in symbols

Alg, 5 Alg, ,

if T, identifies not more elements than T2, i.e. if for any sn E Sn and any t, , t, E

car,.sn:

T,.sn.t, = T,.sn.t, implies T,.sn.t, = T,.sn.t,.

In this definition we do not assume that Alg, is reachable. The ambiguity relation

is defined in the class of all Sig-algebras and constitutes a preordering, i.e. is reflexive

and transitive.

The defined preordering has a natural intuitive interpretation. Observe that for

each of the algebras Algi each term t E car,.sn describes a way of the construc-

tion of the (reachable) element Ti,.sn.t. If two different terms have the same value

in the target algebra, then they describe two different ways of the construction of

the same element, E.g. in Arith the terms plus(one, plus(one, one)) and

plus(plus(one, one), one) describe two different ways of the construction of the

integer 3. The more ways we have to construct one element in an algebra, the more

that algebra may be called ambiguous. Moreover, each term may be regarded as a

parsing tree of a reachable element. In fact, if Alg is an algebra of syntax generated

by a CF-grammar (Section 4), then terms correspond exactly to parsing trees.

Proposition 3.3. Zf Alg, and Alg, are similar and if Alg, is reachable, then the

(unique) homomorphism H : Alg, + Alg, exists if and only if Alg, L Alg,.

Proof. If H exists, then by (3.1) T2 must identify values at least as much as T, . (It

identifies exactly as much as T, iff H is an isomorphism.) If Alg, c Alg,, then the

homomorphism H may be constructed in the following way: For any sn E Sn and

any a E car,.sn take an arbitrary t E car,.sn such that T,.sn.t = a and set

H.sn.a = T,.sn. t.

Since Alg, is reachable, t always exists and since T2 glues at least as much as Tl,

the choice of t does not matter. It is not difficult to prove that H is indeed a

homomorphism. Cl

Denotational engineering 217

As is easy to see, the algebra Term is less ambiguous than any other algebra Alg

with the same signature, i.e. Termc Alg. An algebra for which the opposite relation-

ship, i.e. AlgcTerm, is satisfied is called unambiguous. In an unambiguous algebra

each reachable element is the value of exactly one term, i.e. may be constructed in

exactly one way. If that property is not satisfied, then the algebra is called ambiguous.

An algebra Alg is called initial in the class of all Sig-algebras, or is simply called

Sig-iniCa1, if for any other Sig-algebra Alg, there is exactly one homomorphism

from Alg into Alg, .

Proposition 3.4. The following properties are equivalent:

(1) Alg is initial,

(2) Alg is reachable and unambiguous,

(3) Alg is isomorphic to Term.

Proofs are immediate from previous propositions.

4. Algebras versus grammars

In our model of a software system syntax is represented by an algebra. This allows

us to express the compositionality principle of denotational semantics and to

formulate the rules governing the systematic derivation of syntax (Section 6). It

turns out, however, that in applications it is rather inconvenient to describe the

algebras of syntax in the style used for the algebras of denotations, since this leads

to long definitions with a lot of superfluous technical notation.

Below we discuss a technique of defining algebras of syntax by context-free

grammars. This is not only more common for the definitions of syntax, but also

better fits into the style of syntax derivation through successive refinements and

provides an adequate starting point for the construction of parsers.

The idea of associating algebras with grammars is not new. It has been already

explored by Goguen et al. [161, where a grammar gives rise to an algebra of parsing

trees referred to as abstract syntax. In this paper we are interested mostly in the

derivation of a concrete syntax, the abstract syntax being developed only at an

intermediate stage. We analyze therefore, the relationship between grammars and

the algebras of words, rather than of parsing trees.

For technical reasons we slightly redefine the classical concept of a context-free

grammar by associating it with a signature. Let Sig = (Sn, Fn, sort, arity) be an

arbitrary signature with finite sets Sn and Fn, and let T be a finite alphabet of

terminal symbols disjoint with Sn. By a Sig-grammar we mean a pair,

Gra = (Sig, pro),

where pro is a function which assigns productions to functional symbols:

pro: Fn+(Snx(T(Sn)‘*),

pro.fn = (sn, xOsn, . . . s,_,sn,x,I)

218 A. B/Me

and where sn = sort.fn, (sn, , . . . , sn,) = arity.fn and each xi is a word over the

alphabet T. The elements of Sn play the role of nonterminals. For the sake of

uniqueness (of T) we assume that T is the least alphabet such that all xi are words

over T.

Unlike in the traditional setting (see e.g. Harrison [IS]) we do not distinguish

any initial nonterminal in a grammar. We do not do so since in our case a grammar

defines a class of languages rather than a single language. With every Sig-grammar

Gra = (Sig, pro) over a terminal alphabet T we unambiguously associate a Sig-

algebra of words AL.Gra = (Sig, car, fun) such that:

(1) for any sn E Sn, car.sn is the set of all words over T derivable in the usual

sense from the nonterminal sn by the productions of the grammar;

(2) for any fn E Fn with sort.fn = sn and arity.fn =(sn,, . . , sn,) if pro.fn =

(sn, xOsn, . . x,_,sn,x,,), then

fun.fn.(y,, . . . , YJ = xoyl . . . x~-~Y,x~. (4.1)

It is not difficult to prove that AL.Gra is well-defined, i.e. that its carriers are

closed under its operations. One can also prove that every derivable word is

constructable in the algebra, i.e. that our algebra is reachable.

We say that Gra defines AL.Gra. We say that a Sig-algebra Alg is a context-free

algebra (abbreviated CF-algebra), if there exists a Sig-grammar Gra which defines

that algebra, i.e. for which AL.Gra=Alg.

In the remaining part of this section we discuss the problem of the definability

of the algebras of words by grammars. This is an important practical problem which

we have to solve if we wish to organize the process of the derivation of syntax

in a systematic way and if we wish to support it by a computer. At the same

time, however, this is a rather technical problem and therefore we suggest that the

readers who are not especially interested in the derivation of syntax skip the rest

of this section in the first reading. In that case we only advise the reading of the

Proposition 4.3.

By a syntactic algebra we mean any reachable algebra of words with finite sets

of sorts and operations. Of course, every context-free algebra is a syntactic algebra.

The converse implication is not true since in every context-free algebra every carrier

must be a context-free language. It is also true, that the context-freeness of carriers

is not sufficient for the context-freeness of an algebra. As an example consider a

one-sorted algebra with a carrier A = {a, au} and two operations:

h:+A, f:A+A,
(4.2)

h.() = a, jIy = aa.

This algebra is not context-free since f is not expressible by a production in the

sense of (4.1). Of course, if we modify our algebra by replacing f by f ‘: + A with

f’.() = aa, then the algebra becomes context-free.

A syntactic algebra with context-free carriers may be non-context-free for one

more reason, namely if its operations “permute the arguments”. If in a syntactic

Denotarional engineering 219

algebra we have an operation g with a signature say:

g:Ax B+ C,

then for our algebra to be context-free, g must be defined by an equation of the

form g.(a, b) = xOax, bx,. If we set

g.(a, b) = x,bx, uxz ,

then there is no grammar which defines our algebra since any production which

corresponds to the signature of g must be of the form C + x,,Ax, Bx2. This example

shows that our concept of a CF-algebra may be a little too narrow for applications,

since it forces the designer of syntax to obey to the order of arguments chosen by

the designer of denotations. We discuss that problem in more detail at the end of

the section.

Below we formulate a property of syntactic algebras which is necessary and

sufficient for context-freeness. We start from the introduction of some auxiliary

concepts. Let Alg = (Sig, cur,fun) with Sig= (51, Fn, sort, urity) be an arbitrary

syntactic algebra over some (minimal) alphabet T. If for an operation symbol fir

with urityLfn = (sn, , . . . , sn,) where n 3 0, there exists a string of words (x,, . . , x,,) E

(Tc*Yn+‘) such that for any argument (y, , . . . , yn) of that function:

fun..Mv,, . . . > Yn) = XOYl . . xn-IYJ,

then (x0,. . . ,x,,) is called a skeleton of fn (and of,fun.fn) in Alg.

A function in a syntactic algebra may have from none to many skeletons. Consider

the following one-sorted algebra with a carrier {u}~+:

h,.(>= a, f1.Y = .F. (4.3)

Function h, has exactly one skeleton, namely (a), and functionf, has two skeletons:

(E, a) and (a, F) where E denotes the empty word. Function f from (4.2) has no

skeleton at all. A function which has a skeleton is called a skeleton.function and if

this skeleton is unique then it is called a monoskeleton function.

If every operation of Alg is a skeleton function, then Alg is called a skeleton

algebra and by a skeleton of Alg we mean any function:

sk : Fn + (T’*)‘+

such that sk.fn is a skeleton of fn. Of course, similarly to functions, also algebras

may have from none to many skeletons. An algebra which has exactly one skeleton

is called a monoskeleton algebra.

With every skeleton algebra Alg = (Sig, cur,fun) and a chosen skeleton sk of that

algebra we may unambiguously associate a grammar GR.(Alg, sk) = (Sig, pro) where

for any fn E Fn with sort.fn = sn, urity.fn = (sn,, . . . , sn,,) and sk.fn =(x0,. . . ,x,)

we set pro.fn = (sn, xosn, . . . x,-,.%x,). By the definition of AL.Gra that grammar
defines Alg, i.e.

AL.(GR.(Alg, sk)) = Alg.

220 A. Blikle

Consequently, Alg is context-free. Since every context-free algebra is a skeleton

algebra we can formulate the following simple proposition:

Proposition 4.1. A syntactic algebra is context-free if and only if it is a skeleton algebra.

In Section 6 we discuss a systematic method of the derivation of an algebra of

syntax Syn from a given algebra of denotations Den. This consists in constructing

a sequence of syntactic algebras

Syn,, . . . , Syn,

such that Syn, = Term, Syn, = Syn and each Syn; is a homomorphic image of Syn,_, .

Of course, Term is a skeleton algebra (cf. (2.2)), hence is context-free. It turns out,

however, that a homomorphism may destroy the context-freeness of an algebra.

Indeed, take as a source algebra the algebra (4.3) which is obviously context-free,

and as a target algebra the algebra (4.2) which is not context-free. The (unique)

homomorphism between them ic i,.a” = n = 1 + a, aa for any n 3 0.

Also an isomorphism may destroy the context-freeness of an algebra. Consider

again (4.3) as a source, and as a target a one-sorted algebra with the carrier

{anb”cn 1 n = 1,2,. . .} and with the following operations:

h,.() = abc,

fi.anbncn = an+lbn+lCn+l for n = 1,2,. . . .

Of course, our new algebra is not context-free and the corresponding (unique)

isomorphism between them is defined by:

I.a”=a”b”c” for n=1,2 ,....

Let Alg, = (Sig, cari,funi), i = 1,2, be two syntactic algebras over a common

signature Sig = (Sn, Fn, sort, arity) and let H : Alg, + Alg, be a (unique) homomorph-

ism between them. We say that H is a skeleton homomorphism if there exists a function

sk : Fn + (T*)”

called a skeleton of H such that for every fn E Fn with sort.fn = sn, arity.fn =

(sn,,..., sn,,) and sk.fn = (x0, , . . , x,):

H.sn.(fun,.fn.(y,, . . . , Y,)) = xdff.sn,.y,) . . x,-l~H.sn,.yn)x, (4.4)

for any argument (y, , . , . , y,,) of fun,.fn. Similarly to functions, also homomorphisms

may have from none to many skeletons. E.g. both our formerly defined homomorph-

isms which have (4.3) as a source have no skeletons.

Proposition 4.2. For any syntactic algebra Alg the following properties are equivalent:

(1) Alg is context-free,

(2) every homomorphism which has Alg as a target is a skeleton homomorphism,

(3) there exists a skeleton homomorphism which has Alg as a target.

Denotational engineering 221

Proof. Let Algz be context-free and let sk be one of its skeletons. Consider

an arbitrary Alg, with a homomorphism H : Alg, + Alg,. For every fn E Fn with

sort.fn = sn, arity.fn = (sn,, . . . , sn,,) and sk.fn =(x0, . . . , x,,) we have

H.sn.(fun,.fn.(y,, . . . , v,,>) =

fur+fn.(H.sn,.y,, . . . , H.sn,.y,,) =

.x,(H.sn,.y,). . .x,,~,(H.sn,.y,,)x,. (4.5)

This proves that H is a skeleton homomorphism, i.e. that (1) implies (2). The

implication from (2) to (3) is obvious because the set of homomorphisms which

point to Alg, is not empty since it contains the canonical term-homomorphism. Now

assume that there exists Alg, with H : Alg, + Alg, which is a skeleton homomorphism.

Let sk be the skeleton of this homomorphism and take an arbitrary .fn E Fyz with

sorr..fn = sn, arir~~.j”n = (sn, , . . , , sn,), sk.fn =(x0, . . . , x,,) and an arbitrary argument

tuple (w, , . . , w,) for funz.fn. Since Alg, is reachable H must be onto (Proposition

3.1) and therefore there exists a tuple (y,, . , y,,) of elements of Alg, such that

H.sn,.y, = w,. Consequently

fun,.,fn.(w, , . . , i-v,) =

_tiin2.fn.(H.sn,.y,, . . . , H.sn ,,.. v,,>=

H.sn.(_fun,.fn.(y,, . . . , y,)) =

xdH.sn,..v,) . . . x,-I(H..m.y,)x,

This proves that sk is a skeleton of Alg,. Hence Alg, is context free. 0

Observe that the grammar of a target algebra is always implicit in the definition

of a corresponding skeleton homomorphism. Indeed, for any equation of the form

(4.4) the corresponding production is:

sn + sk,fn.

Examples will be shown in Section 6. In the same section we shall also see that our

approach to the derivation of syntax will allow, and encourage us to use ambiguous

grammars. Below we define that property formally for grammars over signatures.

A Sig-grammar Gra is said to be unambiguous if for any sn E Sn the corresponding

traditional grammar with sn as the initial symbol, is unambigous in the usual sense

(cf. [lS]). In the opposite case Gra is said to be ambiguous.

Proposition 4.3. A grammar Gra is unambiguous if and only if the algebra AL.Gra

is unambiguous.

The proof of this proposition (which we leave to the reader) is based on the fact

that terms over the signature of Gra unambiguously represent parsing trees over

222 A. Blikle

Gra. More formally, if T: Term + AL.Gra is the canonical term-homomorphism for

AL.Gra, then for any sn E Sn and any x E carsn the elements of the set

represent-and in fact may be regarded as-all parsing trees of x in the grammar

Gra,s,.

At the end of this section one remark is in order. We have to say that for the

sake of making the theory possibly simple we have assumed a simplified definition

of a grammar over a signature where the order of sorts in the arity of a functional

symbol determines the order of nonterminals on the right-hand side of the corre-

sponding production. This makes an algebra with the operation:

while : Command x Expression + Command,

while.(corn, exp) = while exp do corn od

not context-free since while permutes corn and exp whereas any production with

the signature of while cannot do that. For applications this means that the signature

of the algebra of denotations determines the order in which syntactic components

appear in syntactic compound objects. This is, of course, not very practical since it

forces us to think about concrete syntax when we design denotations.

There seems to be at least two ways of repairing the described situation. One

consists in redefining the concept of a grammar over a signature by allowing

permutations. In that case we have to redefine also the concept of a skeleton and

to introduce a few further technicalities if we want to have a unique association of

a grammar with a skeleton to an algebra. Such a solution has been described in [8],

although-as has been pointed out to the author by M. RyCko-it requires further

technical modifications. Another solution consists in keeping the definition of a

Sig-grammar unchanged while allowing that the signature of the algebra of syntax

does not necessarily coincide with that of the algebra of denotations. This requires

the redefinition of the concept of a homomorphism by enriching it with the morphism

of signatures (cf. [13]). Such a solution introduces some additional mathematical

machinery, but it seems more appropriate than the former since the signature

morphisms are known to be useful in the specifications on software anyway. We

leave this as a little research problem to our readers (cf. Section 7).

5. Designing denotations

The method which we discuss in this paper consists of developing the denotational

model (1 .l) of a software system in two basic steps: first we develop the algebra of

denotations Den, then we derive from it a corresponding algebra of syntax Syn. Of

Denorational engineering 223

course, each of these steps consists of many substeps. In this section we briefly

discuss the development of Den. The derivation of Syn is discussed in Section 6.

The development of Den constitutes the most creative step in the mathematical

process of software development. Of course, what this step looks like depends on

the type of software which we design. The development of Den for one programming

language will differ from the development of Den for another programming language,

as much as one language may differ from another. The development of Den for a

language will differ from the development of Den for an operating system and this

will differ from the development of Den for a database system. The art, craft and

science of developing Den is not much less than just the art, craft and science of

the mathematical engineering of software and therefore goes far beyond the scope

of this paper. In this section we restrict ourselves to only a few general remarks,

remarks which are independent of the kind of a software system under consideration.

We start from an observation that in general the algebra Den represents only a

small user-visible part of a corresponding software system. For instance, in a database

management system we usually have (hidden) procedures which temporarily destroy

some constraints imposed on databases and which, therefore, are not to be seen by

the user. In an operating system or in a compiler the user has a direct access to

only a very few functions of the system. It seems advisable, therefore, that the design

process of a software system start from the development of an algebra Sys of the

whole system, which we later restrict to Den by explicitly indicating which of the

operations are to be seen by the user.

From a general viewpoint the development of Sys may be compared to program-

ming in a high-level functional language. As in programming, also here, we may

choose a bottom-up approach and a top-down approach.

In the bottom-up approach a software system is regarded as a computer environ-

ment which supports the manipulation of objects of certain types by means of some

operations. First step towards the development of Sys consists, there, of defining

an algebra with these objects and operations. We call it an algehru of data and

denote by Dat. For instance, if we design a database management system, then the

carriers of Dat contain such objects as numbers, logical values, character strings,

records, databases, reports, etc. whereas operations are arithmetic, Boolean and

string operations, the operations on records and databases, the generators of reports,

etc.

When we are done with Dat we proceed to the next step where we describe a

system which supports the use of the mechanisms of Dat in a computer environment.

Formally, we define the algebra Sys. Since in a computer data are not available in

isolation, but only as objects stored in a memory, we introduce a mathematical

model of a memory state and we define a domain of functions which we call

evaluators and which map states into data. Then we introduce a domain of declarators

which are functions from states to states and which describe the mechanisms of

putting data into the store. If we design a system with imperative mechanisms, then

we also introduce a domain of executors, which are again functions from states to

224 A. B/i!&

states, but which have some slightly different properties than declarators. In the

context of syntax the evaluators, declarators and executors play the role of the

denotations of expressions, declarations and commands respectively.

The sets of evaluators, declarators and executors constitute the major carriers of

Sys. The operations on the elements of these carriers correspond to major program-

ming facilities of the system, e.g. in a typical programming language they correspond

to the constructors of expressions, declarations and commands. We shall see this

in an example at the end of the section.

Now a few words about the top-down approach. In that case we regard a computer

system as a machinery which is supposed to do a certain job and we postpone till

later the decision about the selection of primitive tools (represented by Dat), which

the system may need in order to perform that job. Formally, we start from a

“parameterized” description of Sys, where some carriers and/or operations are left

unspecified. As the design process progresses we “fill the holes” in the definition

of Sys, and in doing that we define a suitable algebra Dat. An example of a top-down

design is shown in [7].

The bottom-up approach is convenient if we start from a fixed set of basic

operations which we want to put together into a software system. For instance, if

we design a system handling spreadsheets, we shall first define a suitable many-sorted

algebra of numbers, texts, spreadsheets, etc. and then we shall extend it by all

computer facilities such as storing data in and retrieving them from the memory,

elaborating data in a programmable way, printing data, sending data to other

computers, etc.

The top-down approach seems suitable whenever we want to, and can, postpone

the decision about the primitives of the system till we define the major functions

of the system. This may happen, for instance, when we design a computer system

which is supposed to react in some expected way with some environment, e.g. with

a plant-control system. This approach may be compared to the “behavioral school”

in software specification, where the external behavior of the system is described in

the first step of system development (cf. [26] and references there).

The process of developing Den is summarized on the diagram of Fig. 2. The

algebra Dat defines a collection of basic tools which must be provided by the future

system. The algebra Sys defines a workshop where the former tools may be used in

a computer environment. This includes the mechanisms of storing data and combin-

ing simple universal tools (basic instructions) into complex problem-oriented tools

(programs). The algebra Den contains a selection of the mechanisms of Sys which

are to be seen by the user.

Dat s
bottom~up sys reSfrlCtl0”) Den
top~dow”

basic full user’s

tools workshop interface

Fig. 2

Denotational engineering 225

Now, let us briefly discuss the mathematical techniques which may be chosen in

defining our three algebras. Essentially they may be split into two classes: axiomatic

(property-oriented) techniques and constructive (model-oriented) techniques.

Axiomatic techniques have been extensively studied on the ground of algebraic

semantics approach and several of them were implemented (see e.g. Goguen,

Meseguer and Plaisted [15] or Ehrig and Mahr [13]). Their major advantage is

abstractness. An axiomatic definition lists the intended properties of the future

system. The obligation of the implementation designer is to satisfy these properties,

no matter how. The disadvantage of axiomatic specifications is that the completeness

and the consistency of such specifications is usually far from evident and may be

difficult to prove (cf. Titterington [31]). This problem is, of course, the more critical

the larger and more complicated is the system. Axiomatic definitions require also

more mathematical maturity from the designer and provide less hints about how to

implement the system. Of course, we do not talk here about a standard implementa-

tion of axiomatic definition by rewriting rules (cf. Dershowitz [121 or Meseguer and

Goguen [23] and references there), since this-at least so far-may only be regarded

as a rapid-prototyping facility.

Constructive techniques lead to definitions which are, of course, less abstract.

Each such a definition describes a concrete mathematical model of a system and

therefore it is much easier to be checked for completeness and consistency and gives

more hints about a future implementation. On the other hand, the adequacy of such

a definition, i.e. the satisfaction of some expected properties of the system, is now

implicit and must be proved.

Contrary to what is usually claimed, the axiomatic techniques do not leave-in

the opinion of the author-more freedom of choice for an implementor than do

the constructive techniques. They only lead to definitions which provide less hints

about a future possible implementation than constructive definitions. An axiomatic

definition of a system, i.e. of an algebra Sys, identifies a class of algebras which are

somehow equivalent, e.g. mutually isomorphic. It identifies this class by a set of

axioms, which tell very little about what the elements and the operations of these

algebras can be, but only what properties do they have. A constructive definition

identifies also a class of algebras, just that in this case it explicitly points to one

element of this class, the others being (implicitly) all appropriately equivalent

algebras to the chosen one, e.g. isomorphic with it. The obligation of an implementor

consist in each case of finding an implementation algebra Imp which is appropriately

related, e.g. by a homomorphism, to any algebra in the former class. Of course,

given a constructive definition of an algebra, the implementor may use it in the

construction of the definition of Imp. Moreover, he may be tempted to use it which,

of course, somehow “spoils” his imagination. But from the mathematical viewpoint

he has in each case the same freedom of choice.

Of our algebras of Fig. 2 only Dat seems to be an obvious candidate for an

axiomatic definition. Of course, this always depends on the system under design,

but in general Dat is of an order of magnitude simpler than Sys. It should be

226 A. B/Me

emphasized at this point that an axiomatic definition of Dat does not imply any

(mathematical) obligation to define Sys axiomatically as well. If we have a sufficiently

rich definitional metalanguage, then we may define Dat axiomatically and later refer

to this definition in a constructive definition of Sys. Since Den is a restriction (reduct)

of Sys its definition is always of the same style as that of Sys. In applications, the

definition of Den consists of just a list of selected operations and carriers of Sys.

Example 5.1. In this example we discuss the development of an algebra of denota-

tions of a simple software system. The development of a corresponding (algebra

of) syntax is described in the next section (Example 6.1).

Assume that we want to design a computer system which communicates with the

external world by receiving and emitting messages and where we can elaborate each

received message in a programmable way. The communication with the external

world is to be automatic, i.e. not programmable. For the simplicity of example we

assume that each message consists of only two values, each value being either a

natural number or a boolean value or an error element.

We shall design our system in a bottom-up style thus starting from the algebra

of data. First we define the carriers of this algebra:

n: iVut={l,. . . , N, err},

b : Boo1 = { tt,fi ee}.

In each of these carriers we have included a so-called abstract error (cf. Goguen

[14]) which represents an error signal. We assume to have in Dat the following

operations:

one: + Nat,

plus : Nat x Nat + Nat,

times : Nat x Nat + Nat,

less : Nat x Nat + Bool,

and : Boo1 x Boo1 + Bool.

For the sake of brevity we explicitly define only three of these operations. As is

easy to see our algebra is reachable, no matter how times and and are defined.

one.()= 1,

plus.(n, , nJ = less.(n,, n2) =

n, = err -3 err, n,=err + ee,

n, = err + err, n, = err + ee,

n,+n,> N + err, n, < n2 + tt,

TRUE + n, + n,, TRUE + fJ:

When we have defined Den we can proceed to the construction of a computer system

Denotational engineering 227

over that algebra. For simplicity we assume that our system contains only two

registers-call them x and y-where to store values in computer memory. We define

four following domains:

ide : Identifier = {x, y},

val: Value = Nat 1 Bool,

mes : Message = Value X Value,

sta : State = Ident$er + Value.

Now, we have to think about the type of actions which our system should be able

to perform. Again, for the sake of simplicity we assume only four types of such

actions: readings and writings which correspond to input and output operations,

evaluators which are used to retrieve and elaborate data stored in the registers x

and y, and executors which are used to transform states. We introduce therefore

four further domains:

rea : Reading = Message + State,

wri : Writing = State -+ Message,

eva : Evaluator = State+ Value (expression denotations),

exe : Executor = State 25 State (command denotations).

Here we have assumed that readings, writings and the evaluations of expressions

always terminate. Therefore the first three domains contain only total functions.

The last domain contains also partial functions since we intend to allow loops in

the execution of commands. This, of course, does not stand in a contradiction with

our earlier assumption (Section 2) that all operations in our algebras must be total.

As we shall see below, executors are to be the elements of Sys rather than its

operations.

The next step consists of defining the constructors of readings, writings, evaluators

and executors. Here we describe the programming facilities of the system. Let us

start from the readings and writings. We assume to have only one action of each

of these types. We introduce, therefore, two zero-ary constructors:

read : + Reading, write : + Writing,

which we define as follows:

read.().(val, , valJ = [val,/x, val,/y],

write.{).[v&,/x, val,/ y] = (val, , val,).

Note that read is a zero-ary function, whose value read.() is a function from

messages into states. The function write is similar. In an algebraic approach zero-ary

functions represent constants. Instead of saying that an algebra consists of carriers,

constants and functions, we have only carriers and functions, the latter possibly of

a zero-arity. From the viewpoint of applications, constants are primitive actions of

228 A. B/i/de

the system, i.e. such actions which do not need to be constructed from anything

“smaller”.

Now we define the constructors of evaluators. First, with every identifier we assign

an evaluator that given a state returns the value stored under this identifier in that

state:

evaluate : Identifier+ Evaluator,

evaluate.ide.ste = sta.ide.

In the context of the future syntax (Section 6) this means that each identifier

constitutes an expression. The definition of evaluate describes the way in which

such an expression is evaluated.

Next, we want to have such evaluators in the system which allow for the applica-

tions of data-type operations (the operators of Dat) to data retrieved from the store.

To this end for each operation on data we define a corresponding constructor of

evaluators:

e-one : + Evaluator,

e-plus : Evaluator x Evaluator + Evaluator,

e-times : Evaluator x Evaluator + Evaluator,

e-less : Evaluator x Evaluator + Evaluator,

e-and : Evaluator x Evaluator+ Evaluator.

(5.1)

All these constructors are defined according to the same scheme. We give one such

a definition as an example:

e_plus.(eva, , eva,).sta =

let val, = eva,.sta in

let val, = eva>.sta in

val, ~6 Nat + err,

val,& Nat + err,

TRUE + plus.(val, , val,).

The evaluator e_plus.(eva, , eva,) evaluates its argument evaluators eva, and evaz in

the current state and then, if the computed values are of numeric type, applies the

data-type operation plus to these values.

Since identifiers have been used in the construction of evaluators, we must be

able to construct identifiers as well. To this end we introduce two zero-ary construc-

tors, one for each identifier:

create-x : + Identijier, create-y: + Identijier,

create-x.() = x, create_y.() = y.

For the implementation this means that the user of the system can somehow “generate

identifiers from nothing”, e.g. may tape them in from the keyboard.

Denotational engineering 229

In the last step we define four typical constructors of executors which correspond

to four typical program connectives in a programming language:

assign : Identijer x Evaluator + Executor,

continue : Executor x Executor + Executor,

while : Evaluator x Executor + Executor,

if: Evaluator x Executor x Executor + Executor,

Their definitions are quite routine. We give first two of them as an example:

assign.{ ide, eva).sta = sta[eva.sta/ ide],

continue.(exe, , exeJ = exe, - exe,,

where “ - ” denotes the composition operation of partial functions (Section 2).

Now we are ready to define the algebras Sys and Den. The former algebra is

supposed to describe our future system and therefore it should contain all and only

these operations which we want to implement in that system. The latter algebra is

a restriction (reduct) of the former and contains only these operations of Sys which

are to be accessible by the user. In both cases our choice is pragmatic, rather than

mathematical, and depends on what we want to have in the system.

In our example we assume the following signature of Sys:

read : + Reading,

write : + Writing;

create-x : + Identijier,

create-y : + Identtjier;

e-one : + Evaluator,

evaluate : Identifier + Evaluator,

e-plus : Evaluator x Evaluator + Evaluator,

e_ times : Evaluator x Evaluator + Evaluator,

e-less : Evaluator x Evaluator + Evaluator,

e-and : Evaluator x Evaluator + Evaluator;

(5.2)

assign : Identifier x Evaluator + Executor,

continue : Executor x Executor + Executor,

while : Evaluator x Executor + Executor,

if: Evaluator x Executor x Executor + Executor.

All other operations such as e.g. the operations of Dat are regarded as auxiliary

functions introduced only for the sake of the definitions of our constructors. They

do not need to be implemented.

When we are done with Sys we proceed to the definition of Den, i.e. to deciding

which operations of the system are to be visible by the user. In our case we shall

assume that the only nonvisible operations will be read and write. These operations

230 A. Blikle

are to be performed by the hardware. The signature of Den results from the signature

of Sys by removing these two operations with the corresponding carriers.

Although the choice of the operations, and therefore also of the carriers of our

two algebras, is essentially only a pragmatic issue, we should make sure that all

carriers in Den have nonempty reachable parts. A carrier with an empty reachable

part corresponds to an empty syntactic category (i.e. to an empty carrier of that

sort in the algebra of syntax) and therefore it is pointless to have such a carrier in

the algebra. For instance, if we remove from Den the constructors create-x, create-y

and e-one, then the reachable subalgebra of Den becomes empty and therefore also

the corresponding syntactic algebra becomes empty.

6. Designing syntax

In this section we discuss the process of designing a customized syntax for a

given algebra of denotations. Given an algebra Den our task consists of constructing

an algebra Syn with four following properties:

(1) Syn is a syntactic algebra,

(2) there is a homomorphism from Syn into Den,

(3) Syn is context-free,

(4) the notation offered by Syn is sufficiently convenient.

Property (2) is called the correctness of Syn with respect to Den. It guarantees

that Syn may be used as a syntax for Den. The (unique) homomorphism between

Syn and Den is the corresponding denotational semantics.

Of course, in order to be correct Syn must have the same signature as Den. This

implies that these algebras must fit into the diagram of Fig. 3 (cf. also Fig. l), where

Term is a common algebra of terms and Ts (term-to-syntax), Td (term-to-denotation)

and Sd (syntax-to-denotation) are the corresponding unique homomorphisms (this

model will become slightly more complicated in the sequel).

As our diagram shows, Term is correct and any correct syntax must be a homo-

morphic image of Term. Since Term is obviously context-free, we suggest that Syn

Fig. 3

Denotational engineering 231

be derived from Term through a sequence of stepwise homomorphic refinements

preserving both the correctness and the context-freeness. This should lead to a

sequence of algebras Syn,, . . , Syn, such that:

(1) Syn, = Term,

(2) each Syn, is a homomorphic refinement of Syn,_, , i.e. there exists a homo-

morphism Ss, : Syn,-, + Syn,,

(3) each Syn, is correct, i.e. there exists a homomorphism Sd, : Syn, + Den,

(4) each Syn, is context-free,

(5) Syn, = Syn.

The first step in this derivation process, i.e. the construction of Term, is quite

routine since the algebra of terms is unambiguously determined by the signature of

Den. Further steps are, of course, much less routine, since they correspond to design

decisions, such as passing from a prefix to an infix notation, introducing keywords,

omitting superfluous parentheses, etc.

In our approach, the algebra Term is called a prototype syntax and the algebra

Syn is called a$nal syntax. This roughly corresponds to the traditional classification

into an abstract syntax and a concreie syntax (see McCarthy [22], Goguen, Thatcher,

Wagner and Wright [16], Bj$rner and Jones [3]). We use different terms here in

order to emphasize that our derivation of Syn from Term proceeds within one

abstraction level, i.e. that we derive our concrete final syntax from an equally concrete

prototype syntax.

In the derivation of Syn each Syni is an algebra of syntax since homomorphic

transformations obviously preserve this property (cf. Proposition 3.2). In each step

we should check, however, whether Syn, is context-free and correct. The former

property is checked by inspecting whether our homomorphism has a skeleton

(Proposition 4.2). In checking the correctness of Syn, two cases are possible:

(1) If Ss, is an isomorphism, then the correctness of Syn, follows from the

correctness of Syn,_, since in that case:

Sd, = ss;’ . Sd,_,

(2) If Ss, is not an isomorphism, which means that Ss, glues some elements of

Syn,-, together, then Syn, may be incorrect. In order to prove that Syn, is correct

we have to prove that it is not more ambiguous than Den. This amounts to proving

that Tsi does not glue more than Td (cf. Fig. 4), or-which is equivalent, but may

be easier to prove-that Ss, does not glue more than Sd,_, . Observe that due to the

reachability of syntax all the diagrams of Fig. 4 commute.

As the reader has probably noticed already, we do not assume that Syn must be

unambiguous, i.e. that the corresponding grammar must be unambiguous (Proposi-

tion 4.3). Apparently this may lead to an ambiguous (or nondeterministic) parsing

algorithm since for a given element x of Syn the corresponding set of parsing trees

232 A. Btikk

Term

Fig. 4

(cf. Section 4)

7-C’.sn.x = {t 1 Ts.sn.t = x}

may contain more than one element. Observe, however, that the ambiguity of Syn

is allowed only if all the elements of {t] Ts.sn.t = x} are mapped into the same

element of Den. This implies that we can transform our ambiguous parsing algorithm

into a unambiguous one by adding to it an arbitrary procedure which chooses one

element from each set Ts-’ .sn.x. Which parsing tree we choose does not matter

since they are all interpreted (or compiled) into the same element of Den.

A practical advantage of using ambiguous grammars in the description of syntax

is twofold: First, such grammars are usually simpler and more intuitive (easier to

read) than the equivalent unambiguous ones. Second, parsers constructed from

them in the described way are usually faster than parsers derived from equivalent

unambiguous grammars. Both these facts were already discussed in [l] although

without any semantic considerations. A practical implementation of that idea may

also be found in an algebraic-specification language OBJ (Goguen, Meseguer and

Plaisted [15]) under the name of coercions.

Two more remarks are in order to complete our discussion of the derivation of

syntax. First we should emphasize that the transformations of syntax by skeleton

isomorphisms are not as innocent as this may appear at the first moment. Although

they always lead to a correct and context-free syntax, they may considerably change

the parsing complexity of the corresponding grammar. The grammar of the prototype

syntax Term is always of type LL(l), hence leads to very low-cost parsing algorithms.

This is, of course, due to the prefix-notation style of Term. If, however, we change

a prefix notation to an infix notation-which is a typical isomorphic transformation-

then we may raise the complexity of our grammar to a LL(k) with k > 1, or we may

even go beyond the LL(k)-ness (see Example 6.1). This problem seems to require

more research and therefore we shall not discuss it further in this paper.

Another remark concerns some limitations of our denotational model described

by Fig. 3. As it turns out this model usually does not cover the step where we

introduce so called “notational conventions”, e.g. where we allow for an optional

Denotational engineering 233

omission of parentheses and establish some priorities between operators. In such

and similar cases our new syntax, call it post-$nal and denote by SynP’, is usually

still a CF-algebra, but there is no homomorphism neither from Term nor from Syn

into it. Instead, there exists a many-sorted function from Syd”‘ onto Syn (Fig. 5).

This function is in general not a homomorphism and describes a preprocessing of

syntax performed prior to the stage of compilation. An example of such a function

is described in Example 6.1 which follows later.

The mathematical semantics of Syn pf is a combination of the nondenotational

preprocessing Pf and the denotational semantics Sd. In general this is not a denota-

tional semantics. In this situation whether we agree to say that the semantics of

Syn pf is “sufficiently denotational” is a pragmatic issue. On one hand it is quite

obvious that a bad pf may completely “spoil” the denotational effect of Sd. On the

other hand, if the differences between Syn and Synpf are minor-such as e.g. the

optional omission of parentheses-then the denotational advantages of Syn such

as the clarity of the definition of semantics, the feasibility of structured programming,

the ease in developing proof rules, are all inherited by SyrP’. The user of the system

does not even need to see the grammar of Syn”’ nor the formal definition of PJ: In

the manual of the system we give a full grammar of Syn along with the corresponding

denotational semantics. The post-final syntax and Pf may be described informally.

Their forma1 definitions are of interest only for the implementor of the system.

Example 6.1. Here we derive a syntax for the algebra of denotations defined in

Example 5.1. This requires a formal establishment of the signature of that algebra

together with the interpretation functions car and fun. What has been informally

called a signature of Den, formally is only a metaexpression which defines the sorts

and the arities of the operations of Den. When we want to formally talk about

syntax, we have to precisely distinguish between the carriers and the operations of

an algebra on one had and their names-i.e. the elements of the signature-on the

T/ ’ Td

Sd - Uen

Pf

Fig. 5

234 A. Blikle

other. Let then Den = (Sig, car,fun) and Sig = (Sn, Fn, sort, arity) where:

Sn = = {(id), (ex), (co)},

Fn = {$create_x, $create_y, $evaluate, . . . , $while};

car.(id) = Identifier,

car.{ ex) = Evaluator,

car.(co) = Executor;

fun.$create_x = create-x,

fun.$while = while. (6.1)

Functions sort and arity are implicit in (5.2). After having defined the signature

of Den we have a unique corresponding algebra of terms Term. We describe it by

a grammar Gra, which can be effectively derived (in an obvious way) from the

signature of Den:

(id)::=

$create_x

/ $create_y

(ex)::=

$evaluate((id))

1 $e_one

I $e-pW(ex), (4)

(co): :=

$assign((id), (ex))

I$continue((co), (co))

IW((ex), (co), (co))
I$while((ex), (co)).

The prototype syntax which is defined by Gra, is, of course, rather inconvenient.

For instance, it forces us to write:

$while($e_less($create_x, $create_y),

$assign($create_x, $e_plus($create_y, $e_one)))

where we would rather prefer to write something like:

WHILEX<Y DOX:=J’+l OD. (6.2)

In the next step we modify our prototype syntax by introducing an infix notation

and simplifying keywords. This corresponds to a homomorphism

Ss, : Syn, + Syn,

which is defined below. We assume that ide, exp and corn are metavariables ranging

Denotational engineering 235

over the corresponding carriers of Term. For a better readability of equations

everywhere in the sequel we close the syntactic arguments of homomorphisms in

square brackets. Notice that square brackets belong to metanotation whereas the

parentheses “(” and “)” belong to the concrete syntax of the language which is

being defined.

Ss,.(id).[$create_x] =x,

Ss,.(id).[$create_y] =y;

Ss,.(ex).[$evaZuate(ide)] = ide,

Ss,.(ex).[$e_one] = 1,

+,.(ex).[$plus(exp,, exp,)] = (Ss,.(ex).[exp,]+Ss,.(ex).[exp,]);

Ss,.(co).[$assign(ide, exp)] =

Ss,.(id).[ide]:= Ss,.(ex).[exp],

Ss,.(co).[$continue(com,, comJ] =

(Ss,.(co).[com,]; Ss,.(co).[com,]),

Ss,.(co).[$if(exp, corn,, comJ] =

IF Ss,.(co).[exp] THEN Ss,.(co).[com,] ELSE Ss,.(co).[com,] ~1,

Ss,.(co).[$while(exp, corn)] =

WHILE SS,.(eX).[eXp] DO SS,.(CO).[CO??I] OD.

The algebra Syn, is implicit in the definition of that homomorphism. Since our

homomorphism is a skeleton isomorphism, the new syntax is correct and context-free.

A grammar of that algebra may be derived directly (and mechanically) from the

definition of Ss, and is the following:

(id)::=x[y,

(ex)::=(id)lll((ex)+(ex))l . . . ,

(co)::=(id):=(ex)l((co); (co))

(IF (CX) THEN (CO) ELSE (CO) FI

1 WHILE (eX) DO (CO) OD.

(6.3)

Observe that in the new syntax x corresponds to the former $create_x or to

$eualuate(x) depending whether it stands for an identifier or for an expression. The

same concerns y. This may lead to a false conclusion that Ss, is not an isomorphism.

In fact, however, it is an isomorphism since its “gluing effect” is split between two

different sorts:

Ss,.(id).[$create_x] = x,

Ss,.(ex).[$evaZuate(x)] =x.

In the future definition of semantics the meaning of x is always identified by the

context where x appears.

It should also be noticed that although the grammar of Syn, was of the type

LL(l), the new one is not an LL(k) for any k, which is due to the infix notation of

236 A. Blikle

expressions. This only shows that a skeleton-isomorphic transformation of syntax

may substantially change the parsing category of a language.

The new syntax is much more readable than the former but it is still rather

awkward since it forces us to write semantically superfluous parentheses such as

e.g. in ((x:= 1; y := 1); x:= (x-t 1)). We make therefore another modification of

syntax and define the second homomorphism Ss? : Syn, + SynZ. This homomorphism

should lead to the replacement of the production (co) + ((co); (co)) by the production

(co) + (co); (co), leaving all the other productions unchanged. An explicit definition

of that homomorphism is the following, where (*) marks the critical equation:

Ss,.(id).[ide] = ide (Ss,.(id) is an identity),

Ss,.(ex).[exp] = exp (Ss,.(ex) is an identity),

Ss,.(co).[ide := exp] = Ss,.(id).[ide] := S.s,.(ex).[exp],

(*) Ss,.(co).[(com,; comz)] = Ss,.(co).[com,]; Ss,.(co).[com,],

SS~.(CO).[IF exp THEN corn, ELSE corn2 FI] =

IF SS,.(CO).[f?Xp] THEN Ss,.(CO).[COm,]

ELSE SS,.(CO).[COm,] FI

&.(CO).[WHILE exp DO corn OD] =

WHILE Ss,.(ex).[exp] DO Ss2.(co).[com] OD.

In applications it may be advisable that homomorphisms between context-free

algebras are described by the corresponding transformations on grammars. This

requires, of course, some care since not every transformation of a grammar corre-

sponds to a homomorphism. We shall not tackle this issue here leaving it as a little

research problem for the reader (cf. Section 7).

Of course, our second homomorphism is not an isomorphism and therefore we

have to prove that Syn, is not more ambiguous than Den. Since Syn, is correct, this

amounts to proving that Ss, is gluing not more than Sd, (cf. Fig. 4), i.e. that for

any sort sn E {(id), (ex), (co)} and any two elements syn, and syn, from the sn-carrier

of Syn,:

Ssgn.[syn,] = Ss,.sn.[syn,] implies Sd,.sn.[syn,] = Sd,.sn.[syn,]. (6.4)

The proof of this fact is rather long and therefore we postpone it till the end of this

section.

The resulting syntax Syn, is not yet quite acceptable since instead of writing (6.2)

we have to write:

WHILE (X < y) DO X := (y + 1) OD

with two pairs of “superfluous” parentheses. In this case, however, we cannot simply

allow for the omission of parentheses in expressions, since this would lead to a too

Denotational engineering 237

ambiguous syntax. For instance, the expressions ((x+-v) * x) and (x+(y * x))-

which would reduce to the same expression xfy * x-have different denotations.

The described problem is quite typical and is usually resolved by assuming that

parentheses in expressions are optional and that usual priorities between operators

hold. In our case this leads to a next syntax Syn”‘, which we call a post-jinal syntax

and which is described by the following grammar:

(id)::=x(v

(ex)::=(ih)ll~((ex)+(~x))~(e.w)+(EX)~. .

(co)::=(as before).

The relationship between the former and the new syntax is described by a

many-sorted function:

Pf: SynP’+ Syn,

which adds all missing parentheses to expressions in following the established

priorities among operators. For instance:

J’jI(id).[x] = x,

W(ed.Cx<yl=(x<yL

Pf.‘(ex).[(x+y)*x+y]=(((x+y)*x)+y),

P~(CO).[WHILEX<yDOX:=(X+y)*X+yOD]= (6.5)

WHILE @(ex).[x<y] DO @I(id).[x]:= Pj(ex).[(x+y) * x+y]o~=

WHILE. (X<y) DO X:= (((X-ty) * X)+y) OD

etc.

Contrary to all former transformations of syntax, the many-sorted function Pf is

not a homomorphism and therefore it cannot be given an inductive definition. First

of all, Syd” has a different signature than Syn2. This follows from the fact that in

the post-final syntax each data-type operator gives rise to two syntactic operations.

E.g. the operator “+” allows for the construction of exp, + exp, and of (exp, + exp,).

For that reason Pf cannot be a homomorphism in the sense defined in Section 2.

We could have thought, however, about a homomorphism in a more general sense

which allows a so-called morphism of signatures (see e.g. [13]). In that case we are

allowed to glue not only the elements of an algebra, but also its operations. A

generalized homomorphism, similarly to the usual one, may be given an inductive

definition and retains practically all the advantages of a denotational semantics in

the old sense. In particular, the equivalence relation, which it defines in the source

algebra by x = y iff (definition) H.x = H.y, is a congruence relation. It turns out,

however, that Pf is not a homomorphism even in the generalized sense. Indeed,

although

W(d[x+.vl= pJ(ex).[(x+y)I,

if we substitute (x +y) for x + y in a larger context, then the resulting expressions

238 A. B/i/de

need not be equivalent:

pJ.‘(ex).[x+y * x] =

(x+(y*x))f

((x+Y)*x)=

Pf.'(4.[(Xt-Y) * xl.

By the same argument we may show that the combination of Pf with Sd is not a

homomorphism.

Since Pf is not a homomorphism it cannot be given an inductive definition.

Observe, however, that this concerns only P’(ex). The other components retain the

compositionality property as can be seen e.g. from the equation (6.5). The full

definition of Pf splits, therefore, into two parts: a noncompositional definition of

pf(ex) (e.g. by means of an automaton) and a structural-inductive definition of

P’(id) and PJ(co). We leave the details of this definition to the reader.

In applications, a forma1 definition of w is of interest only for compiler designers.

For the user of the system the grammar of the final syntax Syn, along with an

informal description of q (regarded as notational conventions) will usually do.

On the other hand when we address the definition of a system to the user, then

it may be appropriate to “unfold” in the definition of Sd, the definitions of the

corresponding functions from Den. For instance, instead of writing:

Sd,.(ex).[(exp, + expJ] =

e_plus.(Sd,.(ex).[exp,], Sd,.(ex).[exp,])

we write in such a case (cf. Example 5.1):

E.[(exp, + exp,)].sta =

let ml, = E.(exp,).sta in

let val, = E.(exp,).sta in

val, & Nat + err,

val, c? Nat -f err,

TRUE + plus.(val, , ml,),

where E stands for Sd,.(ex). This is, of course, just a usual traditional form of a

denotational definition.

With this remark we have completed the derivation of syntax and now we can

proceed to the postponed proof of (6.4). We have to warn the reader that despite

the simplicity of our example the proof is rather long since it indicates a certain

genera1 method of proving the correctness of a transformation of syntax where we

allow for the omission of parentheses.

In order to prove (6.4) we have to explicitly define the homomorphism Sd,. We

recall that Sd, is the unique homomorphism which satisfies the equation:

Td = Ss, . Sd,.

Its definition is, therefore, implicit in the definitions of Ss, and Td. The former has

been given explicitly earlier and the latter is implicit in equations (6.1) and (2.3).

Denotational engineering 239

Leaving to the reader all calculations-a job which normally should be done by a

computer-we come out with the following explicit definition of Sd,:

Sd,.(id).[x] = create-x,

Sd,.(id).[y] = create-y,

Sd,.(ex).[ide] = evaluate.ide,

Sd,.(ex).[l] = e-one,

Sd,.(ex).[(exp, + exp,)] =
e_plus.(Sd,.(ex).[exp,], Sd,.(ex).[exp,]),

Sd,.(co).[ide := exp] = assign.(Sd,.(id).[ide], Sd,.(ex).[exp]),

Sd,.(co).[(com,; com2)] =

continue.(Sd,.(co).[com,], Sd,.(co).[comJ),

Now observe that since the components Ss,.(id) and Ss,.(ex) are identities, we only

have to prove (6.4) for sn = (co). In that proof we shall use some concepts and facts

from the theory of term-rewriting systems. Since a full forma1 introduction of all

these concepts would lead us beyond the scope of this paper, we decided to assume

that the reader is familiar with the idea of term-rewriting systems and we refer

him/her for details to two survey papers of Huet [19] and Klop [20].

Let Corn denote the carrier of commands of Syn, and let corn possibly with

indices denote an element of Corn. Given a term-rewriting system (TRS) we say

that comr is a reduct of corn in TRS, which we denote by

corn * corn’

if comr results from corn by an application of one rule of TRS. We say that corn is

in a normal form if it has no reduct. By +* we denote the transitive and reflexive

closure of 3.

Now, the genera1 idea of our proof consists in the construction of such a TRS

which has the following properties:

(1) Corn is closed under =+,

(2) + preserves the denotations of commands, i.e. if corn, =+ comz, then

Sd,.(co).[com,] = Sd,.(co).[com,],

(3) + preserves the Ss,-forms of commands, i.e. of corn, 3 com2, then

Ss,.(co).[com,] = S.s,.(co).[com,],

(4) each command has a unique normal form,

(5) if two commands in a normal form have the same Ss,-form, then they are

identical.

If a TRS with the properties (l)-(5) exists, then (6.4) is true. Indeed, take two

commands corn, and corn2 with the same &,-form. By (4) and (1) there exist their

unique normal forms corny and corny which by (2) have the same denotations as

corn, and corn2 and by (3) have the same &,-forms respectively. By (5) our

240 A. Blikle

normal-form commands are identical, hence they have the same denotations, hence

also corn, and corn2 have the same denotations.

The TRS which we shall use in our proof consists of only one rule:

((c,; 4; cd-z cc,; cc,; cd), (6.6)

where the ci are variables ranging over Corn. Informally speaking this rule allows

for the “application” of the associativity of the meaning of semicolon to commands.

Now we shall show that (6.6) satisfies (l)-(S). The proofs of (l)-(3) are routine by

structural induction and therefore omitted. We only mention that in the proof of

(2) we use the associativity of the operation continue from Den.

Proof of (4). First observe that our TRS has a so-called termination property, i.e.

that there are no infinite reduction sequences of the form corn, + corn2 3 In

our case the proof of this fact is quite simple (again by structural induction), but

in the general case it may be far from trivial. There are, however, several standard

techniques of proving the termination property of a TRS (see e.g. Klop [20]).

Due to the termination property the proof of (4) reduces to proving that each

so-called critical pair of commands has a common normal form. In a general case

a critical pair in a term-rewriting system is a pair (p, q) of terms constructed for a

triple:

((a, + b,), (a,+ &), n),

where (a, + b,) and (az+ b,) are rewriting rules, and u is a subterm of a, which is

not a single variable and which is unifiable with a2. The latter means that there

exist two substitutions S and S’ (mappings from variables to terms) such that

S(u) = S’(a2). If this is the case, then we take the least common unification w of u

and a, which has no common variables with a, and two corresponding substitutions

S, and S,:

S,(U) = w = S2(a2).

Given this we can reduce S,(a,) into two terms which constitute the critical pair

(p, q) where p is the effect of the application of (a, + b,) and therefore equals S, (b,),

and q is the effect of the application of (a* + b,) and therefore results from S,(a,)

by the substitution of $(b,) for u.

If a critical pair exists for a given triple, then it is unique up to a permutation.

In our case we have only one rule and therefore we construct a critical pair for that

rule with itself. We have two instances of nontrivial subterms of the left-hand side

of the rule. The first is the whole left-hand side and leads to a trivial critical pair

where p = q. The second is u = (c, ; c2) in which case we have:

w = ((c,,; cl,); cd,

Sl(Ql) = (((cl,; d; 4; 4,

P = ((Cl1 ; c,J; (c2; 4L
9 = ((cl,; (cl,; 4); 4.

Denotational engineering 241

We leave it to the reader that p and 9 reduce to the common normal form

(c11; (cl,; cc *; q))). This completes the proof of (4). 0

In our case the proof of (4) was rather simple due to the simplicity of the TRS.

In more complicated cases we can use, however, a superposition algorithm for the

generation of critical pairs and a Knuth-Bendix algorithm [21] for the completion

of an underlying TRS, i.e. making it satisfy property (4).

We should mention in this place that in the general theory of term-rewriting

systems one usually assumes that the underlying set of terms is a set of unambiguously

parsable prefix terms. In our case commands are infix rather than prefix terms, but

since the corresponding grammar is unambiguous we can apply the general theory

without major modifications. It is not known to the author whether the theory

extends to the case of an ambiguous syntax of terms. So far, therefore, we may only

advise that the nonisomorphic modifications of syntax be performed in one step,

at least if one wants to use our method of proving (6.4).

Proof of (5) (by structural induction). First we introduce an auxiliary concept. A

command is said to be open (open for an exchange of its subcommands with a

context) if it is of the form (corn ,; corn,), and is said to be closed otherwise. Let

corn, and corn2 be in a normal form and have the same %,-form, i.e.

Ss,.(co).[com,] = Ss,.(co).[com,].

This implies that corn, and corn2 are of the same grammatical category (assignment,

if, “;” or while), hence either both are closed or both are open. We have three cases

now:

Case 1. corn, is an assignment, in which case we are done.

Case 2. corn, is not an assignment but is closed, in which case we apply the

inductive assumption.

Case 3. corn, is open and therefore also corn2 is open and

corn, = (corn,, ; corn,,),

corn2 = (corn*, ; com2J.

In that case the following facts can be shown:

(i) corn,, and com2, are closed and in a normal form (obvious),

(ii) corn,, and corn>* are in a normal form (obvious),

(iii) comll and comz, have the same Ss,-form (since they are closed and corn,

with corn2 have the same Ss,-forms) and therefore by inductive assumption they

are equal.

(iv) corn,* and comz2 have the same Ss,-form (by (iii)) and therefore by the

inductive assumption they are equal.

This completes the proof of (5) and therefore also of (6.4). 0

242 A. E/d&

7. Problems related to the derivation of syntax

Our approach to the derivation of a custom-made syntax (Sections 4 and 6) leaves

open many theoretical and practical problems. In this section we try to identify

some of them. We split our list of problems into two groups: general problems and

problems related to the development of a computer-support system.

7.1. General problems

Problem 7.1.1. Investigate if it may be of a practical or theoretical interests to allow

non-context-free algebras in the definitions of syntax. For instance, in the Example

6.1 we may define syntax Syn, by such a modification of Syn, where all operations

of sort (id) and (ex) remain unchanged and where the operations of sort (co) are

defined as follows:

fin-s.$assign.(ide, exp) = ide := rop.exp,

fun-s.$iJ(exp, corn,, corn?) =

IF t'Op,CXpTHEN COm, ELSE COmz FI,

fun-s.$while.(exp, corn) = WHILE rop.exp DO corn OD.

The function rop (remove outer parentheses) is a function which removes outer

parentheses from expressions, and fin-s is a function which assigns operations to

operations’ symbols in Syn,. As is easy to check, the new syntax is an isomorphic

image of the former (hence is correct!), but since the corresponding isomorphism

has no skeleton, our final algebra is not context-free. Formally speaking it cannot

be described by a context-free grammar, but of course a part of it (the carriers of

(id) and (ex) has a context-free grammar and the remaining part may be described

by something like a “CF-grammar with functions”. Observe also that given a parser

(compiler) fo r S yn, it is not difficult to construct one for Syn,.

Problem 7.1.2. Since in the applications we may wish to use ambiguous grammars,

for which we still want to develop efficient parsers (cf. our remarks in Section 6),

define and investigate parsing-complexity categories, such as e.g. LR(k)-ness or

LL(k)-tress, for ambiguous grammars.

Problem 7.1.3. Identify a class of typical (in applications) transformations of alge-

bras and grammars which correspond to homomorphisms (isomorphisms). This may

include the renaming of selectors, passing from prefix to infix notation, the permuta-

tion of nonterminals in the right-hand sides of productions, etc. Classify these

transformations with respect to their effect on:

- context-freeness,

- ambiguity,

- parsing category,
- other properties (?)

of target syntax.

Denotational engineering 243

Problem 7.1.4. Characterize the class of monoskeleton algebras. If there are two

grammars for the same algebra, can they belong to different parsing categories?

Problem 7.1.5. Our definition of a context-free algebra does not allow for a permuta-

tion of arguments by an operation. This may be repaired by generalizing the concept

of a homomorphism as suggested at the end of Section 4. lnvestigate this solution.

Problem 7.1.6. In the life-cycle of a software system we usually modify the system

by adding and/or removing some operations. On the ground of our model this

corresponds to the extensions and the restrictions of the algebra of denotations. Of

course, when we change the algebra Den we also have to change the algebra Syn,

and we want to do this in such a way that as much as possible of the old syntax

remains legal and means the same as before. Investigate this problem and try to

characterize such transformations of Den which lead to as much as possible “con-

servative” transformations of Syn.

7.2. Problems related to the development of a computer support

The process of syntax derivation consists of several steps where we transform

algebras and/or grammars. In each step we have to prove that our target syntax

has several properties. This leads to the necessity of developing appropriate

algorithms and specification techniques.

Problem 7.2.1. How should we specify (represent) homomorphisms between alge-

bras in the process of syntax design? There seems to be two generally different ways

of doing this. We can either specify a homomorphism by equations, in which case

the computer has to generate the target algebra or grammar, or we can specify it

implicitly by modifying the source algebra, in which case the computer has to check

whether our modification indeed corresponds to a homomorphism.

Problem 7.2.2. Develop algorithms which support the following logical and transfor-

mational steps in the derivation of Syn, from Syn,_, (cf. Fig. 4):

(1) Check the following properties of Ss,:
_ is Ss, a skeleton homomorphism?
- is Ss, an isomorphism?
- is Ssi not gluing too much (is Syn, correct)?

(2) Check the parsing category of Syn, given the parsing category of Syn,_, .

(3) Construct the homomorphism Ts, :Term+ Syn, or the inverse of this

homomorphism, i.e. the parsing transformation. This may be constructed either only

once in the last step, or by modifying Ts,_, to Tsi in each step. Observe that if the

definition of Den has been written in an implemented metalanguage, than the inverse

of Ts, may be regarded (used as an interpreter, since with every syntactic object it

244 A. Blikle

assigns an executable expression. At the same time, however, it may also be

interpreted as a parser.

8. A little case study: The development of a word processor

In this section we discuss an example which is a little more realistic than that

discussed in Sections 5 and 6: the development of a simple wordprocessor. For the

sake of brevity we describe only a few typical functions of such a processor and

we omit any formal consideration of the problem of the screen representation of a

document. We start from the development of the algebra of data, where the major

concept is that of a document.

A document appears to the user as a pair of strings of characters separated by a

cursor. The string which precedes the cursor is called the prefix and the string which

follows the cursor is called the postjx. If the postfix is nonempty, then its first

character is called the current character and is pointed to by the cursor.

A document may be elaborated in one of two regimes: development (DEV) or

marking (MARK). In the former regime we have available such functions as e.g.

typing a character into the document, shifting the cursor, pasting a previously stored

block into a document, saving the document in the memory, etc. In the latter, we

may mark a part of a document and then either delete it or store it for the future

copying or moving. The marked part is called a block. In the MARK regime a block

appears on the screen as a highlighted postfix of the prefix (i.e. the marking command

works only forwards). In the DEV regime the block is not displayed on the screen

but is stored in the memory.

In the regime of development the user may choose between two different working

modes: inserting (INS) and overtyping (OVE). When the system is switched from

DEV to MARK the information about the actual mode is stored for the future use.

We assume that the system may communicate some messages to the user, especially

in the case of errors.

We start our formal definition from defining the domain of documents:

dot : Document = Prejix x Block x Postfix x Mode x Regime x Message,

pre : Prejix = Text,

post: Postfix = Text,

block : Block = Text,

text: Text = Character’*,

char : Character = {a, b, . . . , A, B, . . . , 1,2, . . . , 0, !, @, #, . . .>,

mode : Mode = {INS, OVE},

reg:Regime= {DEV,MARK},

mes : Message = {OK}1 Error,

err : Error =

Denotational engineering 245

The elements of the domain Error will be established later in the course of defining

the actions of our system. Now, let us start from basic operations on documents

that we want to have in the system. First we choose their names, sorts and arities,

i.e. we define the signature of the algebra Dat:

create-ed : + Document

(create empty document),

type-a : Document + Document

(type character “a” (type-char for any char E Character)),

in-toggle : Document + Document

(toggle between INS and OVE),

set-mark : Document + Document

(set the MARK regime),

f-shif : Document + Document

(shift cursor forwards one character),

b-shif : Document + Document

(shift cursor backwards one character),

copy : Document + Document

(store block for future copying),

move : Document + Document

(store block for future moving),

del: Document + Document

(delete block),

paste : Document + Document

(insert block into the text).

(8.1)

Below we define our operations. Let “I” denote the concatenation of strings and

let head and tail denote the usual functions on strings with head.{) =() and

taiL()=(), where () denotes the empty string.

create-ed.() = ((), (), (), INS, DEV, OK).

This operation creates a document with an empty prefix, empty block and empty

postfix and with the default mode INS and default regime DEV. The initial message

is, of course, “ok”.

type-a.(pre, block, post, mode, reg, mes) =

reg = MARK+(pre, block,post, mode, reg, INVALID OPERATION),

mode = INS + (pre*(a), block, post, mode, reg, OK),

mode = OVE + (pre^(a), block, tail.post, mode, reg, OK).

This operation is available only in the DEV regime and depending on the actual

mode it either inserts an “a” at the current position or overtypes with “a” the

current character. We assume to have such an operation for each character separately.

This means that the user is able to type any character from the keyboard into the

246 A. Blikle

document.

in-toggle.(pre, block, post, mode, reg, mes) =

reg= MARK+{ pre, block,post, mode, reg, INVALID OPERATION),

mode = INS + (pre, block, post, OVE, reg, mes),

mode = OVE + (pre, block, post, INS, reg, mes).

This operation is available in the DEV regime and toggles between the modes INS

and OVE.

set-mark.(pre, block, post, mode, reg, mes) =

reg = DEV+ (pre, (), post, mode, MARK, OK),

reg = MARK + (pre, block, post, mode, reg,

YOU ARE ALREADY IN MARK REGIME).

This operation is available in the DEV regime. It switches the regime into MARK and

empties the block.

f-shift.(pre, block, post, mode, reg, mes) =

reg = DEV + (pre*(head.post), block, tail.post, mode, reg, OK),

reg = MARK + (pre, block*(head.post), tail.post, mode, reg, OK).

This operation is available in both regimes. It shifts the cursor one character forwards

unless the postfix is empty. In the DEV mode this results the shifting of the first

character from the postfix to the prefix; in the MARK mode-the shifting of the same

character to the block. In the latter case the part of the text stored in the block is

highlighted on the screen. The operation of shifting the cursor backwards is defined

analogously. Of course, in the MARK regime backwards shifts demark the formerly

marked text.

The operations copy, move and de1 are available only in the regime MARK and

all of them change the regime to DEV. The first adds the content of the block to the

prefix (i.e. leaves the portion of the formerly highlighted text in the document) and

stores the block for the future use:

copy.(pre, block, post, mode, reg, mes) =

reg = MARK + (pre^block, block, post, mode, DEV, OK),

reg = DEV+ (pre, block, post, mode, reg, INVALID OPERATION).

The operation move stores the block but does not add it to the prefix, and the

operation de1 only empties the block. Formal definitions are left to the reader. The

operation paste is available in the DEV regime and copies the block into the document

at the current position. Then it empties the block:

paste.(pre, block, post, mode, reg, mes) =

reg = DEV + (pre^block, (), post, mode, DEV, OK),

reg= MARK+ (pre, block,post, mode, reg, INVALID OPERATION).

Observe that all our operations do not depend on the message component of the

document and whenever an error message is generated the other components of the

Denotational engineering 247

document remain unchanged. This means that the only reaction of the system to a

user’s error is to display an error message without doing nothing with the rest of

the document. An error does not suspend the system and any next correct move of

the user generates an “OK" message.

With this we have completed the development of the algebra Dat of data. Now

we proceed to the second stage where we define a computer system based on that

algebra. We assume that in this system we should be able to keep a current document

in computer memory, to perform all defined operations on it, to save the textual

part of the document for the future use and to retrieve the formerly saved file for

elaboration. Later we shall also show how to enrich our system by the mechanism

of procedures. So far we define the following domains:

sto : Store = Identifier + *, Text,

ide : Identijer = Character,

sta : State = Document x Name x Store,

name : Name = Identijier,

exe : Executor = State + State,

ini : Initiator = Store -+ State,

ter : Terminator = State + Store.

In the stores we store text files named by identifiers. For simplicity we assume that

identifiers are single characters. A state (of the system) consists of a document, a

name of that document and a store. Actions which our system may perform are of

three types: executors which modify states and which are used during a session with

the system, initiators which create states from stores and which are used to initiate

a session and terminators which reduce a state to a store and which are used to

close a session.

Below we define the constructors of executors, initiators and terminators.

Analogously as in the Example 5.1 (cf. (5.1)) we first “lift” all operations of the

algebra Dat to the level of the constructors of executors. For each non-zero-ary

operation on documents,

oper : Document + Document,

we define the following zero-ary constructor of executors:

co-oper : + Executor,

co-oper.().(doc, name, sto) = (oper.doc, name, sto).

Each such a constructor generates an executor which modifies only the document

component of a state and does that by applying the corresponding operation on

documents. We have, therefore, the following executor constructors: co-type-a,

co-in-toggle, co-copy, etc. We do not assign such a constructor to create-ed since this

operation will be used later to define an initiator.

The constructors which have been defined so far are zero-ary, i.e. they correspond

to primitive executors. Each such an executor is “activated” by the user by only

248 A. B/&k

communicating the name of the corresponding constructor to the system, but without

giving any arguments. Below we define two constructors which are not lifted

operations of Dat and which have nontrivial arities:

rename : IdentiJier -+ Executor

(rename the current file),

extcopy : IdentiJer + Executor

(external copy);

rename.ide.(doc, name, sto) = (dot, ide, sto);

extcopy.ide.(doc, name, sto) =

let (pre, block, post, mode, reg, mes) = dot in

sto. ide = ? + ((pre, block, post, mode, reg, NO SUCH FILE), name, sto),

TRUE + ((pre^(sto.ide), block, post, mode, reg, OK), name, sto).

Here sto.ide=? is a shorthand for “not sta E dom.sto” and therefore is satisfied

whenever ide does not belong to the domain of sto. The first operation changes the

name of the current document, the second copies an indicated textfile into the

current position of the current document.

Now we proceed to the constructors of initiators and terminators. We assume to

have four following constructors:

create : Identijier + Initiator

(create a new document),

edit : Identijier -3 Initiator

(adit an existing document),

save : + Terminator

(save the current document),

quit: + Terminator

(quit without saving).

For the sake of brevity we give only two of the corresponding definitions:

create.ide.sto = (create-ed.(), ide, sto),

save.((pre, block, post, mode, reg, mes), name, sto) =

sto[preApost/ name].

First operation creates a state with an empty document. The other, stores the

concatenation of the prefix and the postfix of the current document under the given

name in the store.
At the end we have to define the constructors of identifiers since the latter appear

as the arguments of some of our formerly defined constructors. Since identifiers are

just characters, we assugn with each character a corresponding constructor:

makeide-a : + Identi$er

makeide-a.() = a

Denoiotional engineering 249

This completes the development of the algebra Sys. Now we select Den in Sys by

selecting the operations which we want to make accessible to the user:

makeide-a : + Identijier (analogously for other characters),

co-type-a : + Executor (analogously for other characters),

co-paste : + Executor,

rename : Identijier + Executor,

extcopy : IdentiJier -+ Executor,

create : Identijier + Initiator,

edit : Identljier + Initiator,

save : + Terminator,

quit : + Terminator.

(8.2)

In contrast to the signature (5.2) in our former example, the present signature

gives rise to a very poor syntax reduced to a finite list of the names of actions

available in the system. It is so because there are no programming facilities in the

system, e.g. there are no constructors neither of executors nor of initiators, nor of

terminators that take these actions as arguments. In such a case the derivation of

syntax is trivial and therefore we omit this step in our example.

Now we may proceed to extending of our model by procedures. We assume that

by a procedure we shall mean any sequence of executors stored for a future execution.

Of course, in the abstract model we shall not store the sequences of executors

themselves, but their intended effects, hence state-to-state transformations. We

introduce, therefore, two new domains:

proc : Procedure = State + State,

p-sto : Proc-store = IdentiJer +m Procedure,

and we rename the former domain Store to

f-sto : File-store = IdentiJer +m Text.

Here the reader may wonder why we have introduced separate domains of stores

for procedures and for textfiles. The reason is such that procedures should have no

access to procedure stores (should not be self-applicable), whereas executors must

have such an access in order to execute procedure calls. This will be seen better

when we define our new domains and constructors:

sta : State = Document x Name x File-store,

env : Environment = State x Proc-store,

sto : Store = File-store x Proc-store;

exe : Executor = Environment + Environment,

dec : Declarator = Environment + Environment,

p-body : Proc-body = Environment + Environment,

ini : Initiator = Store + Environment,

ter : Terminator = Environment + Store.

250 A. Blikle

States in the new sense are the same as before (since File-store is the same as the

former Store) and environments consist of a state and a procedure store. Now,

executors have access to the whole environment but procedures only to its state

component. This protects procedures against self-applicability and makes our set

of domain equations solvable in set theory (see [lo] and [9]). The domains of

executors, declarators and procedure-bodies are identical, but since they are going

to have different associated constructors, their corresponding reachable parts in the

algebra of denotations will be different.

Now we are ready to specify the signature of the new algebra Den. It consists of

the signature (8.2) of the former Den-but with the new meanings of domains-plus

the following operations:

make-body : Executor + Proc-body,

continue : Proc-body x Proc-body + Proc-body,

call : Identijer + Executor,

declare : Identijer x Proc-body + Declarator.

Given this new signature we have to redefine the “old” constructors and to define

the new ones. The former task is quite routine since the new constructors define

executors, initiators and terminators which “do the same as before”, but now may

receive in the arguments and/or return in the values also procedure-stores. E.g. in

the new version the constructor rename, given an identifier produces an executor

which does the same as before with the state and keeps the procedure-store com-

ponent unchanged:

rename.ide.((doc, name, f-sto), p-sto) =

((dot, ide, f-sto), p-sto).

Now we define new constructors. The first makes a procedure from an executor:

make-body.com = corn.

Observe that this is not an identity function, since the type of its argument is different

from the type of its value.

continue.(p-body,, p-body,) = p-body, . p-body,.

This is the usual “;” operation (as e.g. in Example 5.1) just that in our case it is

applicable to procedure bodies rather than to executors. This means that we may

declare as a procedure a sequence of executors to be executed one after another,

but such a sequence is not itself an executor.

Procedure calls are defined as follows:

call. ide.(sta, p-sto) =

let ((pre, block, post, mod, reg, mes), name, f-sto) = sta in

p-sto.ide=?+ (((pre, block, post, mod, reg, NO SUCH PROCEDURE),

name, f-sto), p-sto),

let proc = p-sto. ide in

(proc.sta, p-sto).

Denotational engineering 251

A procedure call generates an executor that executes a procedure stored under ide

in the current procedure-store. If there is no such procedure then the call issues an

appropriate error message.

Now we come to the problem of defining procedure declarators. Since procedure

calls are executors, they may appear in procedure bodies and therefore we have to

decide if they are to be interpreted as nonrecursive calls or as recursive calls. Let

us discuss both possibilities. In the former case we define:

declare.(ide, p-body).(sra, p-sto) =

let proc.sta =jrst.(p-body.(sta, p-sto)) in

(sta, p-sto[proc/ idea]). (8.3)

Observe that the metavariable sta, which appears in the let-in subdefinition, is bound

and therefore represents a call-time state, whereas p-sto in the same subdefinition

is free and therefore represents a declaration-time store. The declared procedure

when applied to a call-time state expands it to an environment by adding the

declaration-time procedure-store and then applies the body to that environment.

From the resulting environment it takes the state-component as the new state. We

emphasize that all procedure names which appear in the inner calls of proc are

referred to the declaration-time p-sto and therefore have static bindings. Con-

sequently, if we try to call a procedure which calls itself, then we either have an

error signal “NO SUCH PROCEDURE”, or we call another procedure with the same

name, if such has been declared prior to the declaration of our procedure. In any

case such a call does not lead to a recursion.

If we want to allow for recursive procedures, we define our constructor as follows:

declare.(ide, p-body).(sta, p-sto) =

letrec proc.sta =$rst.(p-body.(sfa, p-sto[proc/ ide])) in

(sta, p-sto[proc/ ide]). (8.4)

In this case proc is defined by a fixed-point equation with respect to its call or calls.

This is, of course, quite a routine definition. It corresponds to the mechanism of so

called static recursion since, as in the former case, the binding of all procedure

names in the body is static.

In the present model a procedure may call recursively only itself. Mutually

recursive declarations will result in an error signal at the time of the call. If we want

to allow for mutual recursion, we have to define a new declarator-constructor which

takes a tuple of procedure-bodies and elaborates them all at once. We may also

expand our model by allowing procedures with parameters [lo].

With this remark we have completed the definition of our new algebra Den. Since

the derivation of syntax does not lead, in this case, to any problems which have

not been discussed in Example 6.1, we leave this step to the reader as an exercise.

252 A. Blikle

Acknowledgement

Special thanks should be addressed to Marek RyCko, who pointed out a technical

mistake in [7], and to Brian Monahan who’s comments about the early version of

the paper cannot be overestimated. The author also wishes to acknowledge many

very useful remarks communicated to him by the referees of Science of Computer

Programming. Last but not least the members of the Group MetaSoft contributed

by their constructive criticism about the whole approach to the present shape of

the paper.

References

[l] A.V. Aho, S.C. Johnson and J.D. Ullman, Deterministic parsing of ambiguous grammars, Comm.

ACM 18 (1975) 441-452.
[2] D. Bjorner and C.B. Jones, The Vienna Development Method: The Meta Language, Lecture Notes

in Computer Science 61 (Springer, Berlin, 1978).

[3] D. Bjorner and C.B. Jones, Formal Specification and Software Deue!opment (Prentice-Hall, Engle-

wood Cliffs, NJ, 1982).

[4] D. Bjdrner and O.N. Oest, eds., Towards a Formal Description of ADA, Lecture Notes in Computer

Science 98 (Springer, Berlin, 1980).

[5] A. Blikle, Noninitial algebraic semantics, in: D. Bjorner, ed., FormalSoftware Development Methods:

Combining Specijcation Methods (Springer, Berlin, 1984).

[6] A. Blikle, Met&oft Primer: Toward a Metalangunge for Applied Denotational Semantics, Lecture

Notes in Computer Science 288 (Springer, Berlin, 1987).

[7] A. Blikle, Denotational engineering or from denotations to syntax, in: D. Bjorner, C.B. Jones, M.

Mac an Airchinnigh and E.J. Neuhold, eds., VDM: A Formal Method at Work, Lecture Notes in

Computer Science 252 (Springer, Berlin, 1987).

[8] A. Blikle, Denotational engineering or from denotations to syntax, ICS PAS Reports no 605,

Institute of Computer Science, Polish Academy of Science, Warsaw (1987).

[9] A. Blikle, A guided tour of the mathematics of MetaSoft ‘88, Inform. Process. Lett. 29 (1988) 81-86.

[IO] A. Blikle and A. Tarlecki, Naive denotational semantics, in: R.E.A. Manson, ed., Information

Processing 83 (North-Holland, Amsterdam, 1983).
[ll] P.M. Cohn, Universal Algebra (Reidel, Dordrecht, Netherlands, 1981).

[12] N. Dershowitz, Computing with rewrite systems, Inform. Contr0.t 65 (1985) 122-157.

[13] H. Ehrig and B. Mahr, Fundamentals of Algebraic Specijcation 1 (Springer, Berlin, 1985).

[l4] J.A. Goguen, Abstract errors for abstract data types, in: E. Neuhold, ed., Formal Description of

Programming Concepts (North-Holland, Amsterdam, 1978).

[15] J. Goguen, J. Meseguer and D. Plaisted, Programming with parameterized abstract objects in OBJ,

in: D. Ferrari, M. Bolognani and J. Goguen, eds., Theory and Practice of Software Technology

(North-Holland, Amsterdam, 1983) 163-194.

[16] J.A. Goguen, J.W. Thatcher, E.G. Wagner and J.B. Wright, Initial algebra semantics and continuous
algebras, L ACM 24 (1977) 68-95.

[17] M.J.C. Gordon, The Denotational Description of Programming Languages (Springer, Berlin, 1979).

[18] M.A. Harrison, Introduction to Formal Language Theory (Addison-Wesley, Reading, MA, 1978).

[19] G. Huet, Confluent reductions: Abstract properties and applications of term rewriting systems, J.

ACM 27 (1980) 797-821.

[20] J.W. Klop, Term rewriting systems: A tutorial, Bull. EATCS 32 (1987) 143-182.

[21] D. Knuth and P. Bendix, Simple word problems in universal algebras, in: J. Leech, ed. Computational

Problems in Abstract Algebra (Pergamon Press, Elmsford, 1970) 263-279.

[22] J. McCarthy, A basis for a mathematical theory of computation, in: P. Braffort and D. Hirschberg,
eds., Computer Programming and Formal Systems (North-Holland, Amsterdam, 1967) 33-70.

Denotational engineering 253

[23] J. Meseguer and A.J. Goguen, Initiality, induction and computability, in: M. Nivat and J. Reynolds,

eds., Application of Algebra to Language Definition and Compilation (Cambridge University Press,

Cambridge, 1985) 459-541.

[24] P. Mosses, The mathematical semantics of Algol 60, Technical Monograph PRG-12, Oxford

University (1974).

[25] P. Mosses and D.A. Watt, The use of action semantics, in: M. Wirsing, ed., Formal Description of

Programming Concepts III (North-Holland, Amsterdam, 1987).

[26] D.T. Sannella and A. Tarlecki, An observational equivalence and algebraic specification, in:

Proceedings 10th Colloquium on Trees in Algebra and Programming, Joint Conference TAPSOFT,

Lecture Notes in Computer Science 185 (Springer, Berlin, 1985) 209-263.

[27] D. Schmidt, Denotational Semantics: A Methodologyfor Language Development (Allyn and Bacon,

Boston, MA, 1986).

[28] D. Scott and Ch. Strachey, Toward a mathematical semantics for computer languages, Technical

Monograph PRG-6, Oxford University (1971).

[29] J.E. Stoy, Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory

(MIT Press, Cambridge, MA, 1977).

[30] R.D. Tennent, The denotational semantics of programming languages, Comm. ACM 19 (1976)

437-453.

[31] G.C. Titterington, Application of formal methods in an industrial environment (Final project report),

Report to the Alvey Directorate (Software Engineering), Software Sciences Ltd., Project no

TH726DC, Reference no 5510 (1986).

