.l i"
4
;

aasié 7

L A

':'\NSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-7, NO. 5, SEPTEMBER 1981

519

On the Development of Correct Specified Programs

ANDRZEJ J. BLIKLE

Abstract—The paper describes 2 method of program development
which guarantees correctness. Our programs consist of an operational
part, called instruction, and a specification. Both these parts are sub-
ject to the development and the refinement process. The specification
consists of a pre- and postcondition called giobal specification and a set
of assertions called local specification. A specified program is called
correct if:]) the operational part is totally correct w.r.t, the pre- and
postcondition, 2) the precondition guarantees nonabortion, 3) local
assertions are adequate for the proof of 1) and 2). The requirement of
nonabortion leads to the use of a three-valued predicate calculus. We
use McCarthy’s calculus in that place. The paper contains a description
of an experimental programming language PROMET-1 designed for our
style of programming. The method is Mustrated by the derivation of a
bubblesort procedure. !

Index Terms— Asserﬁoﬁ-speciﬁed programs, bubblesort procedures,
program correctness, program development, PROMET-1, sorting.

I. InNTRODUCTION

HE PROBLEM of program correctness is frequently un-
Tderstood in a too narrow sense as the problem of proving
programs correct. It is implicit in this understanding that
program development and program verification are two inde-
pendent processes, the first of which must be completed before
the second starts. The scheme *“first develop then prove™
corresponds, maybe, to the way of establishing simple mathe-
matical theorems, but.is certainly inadequate for the use of
mathematics in engineering. Nobody would dare to suggest
that a civil engineer postpone the calculations until his bridge
has been constructed.” Why then is a software engineer sup-
posed to be an exception? '

The present paper describes a method of programming where
program correctness is systematically controlled during pro-
gram development. Of course, in order to talk about correct-
ness one must have a standard against which to measure this
correctness, ie., a specification, and a standard of how to
measure this correctness, ie., a satisfiability relation. In our
method the specification consists of a precondition, a post-
condition, and a set of local assertions. Strictly speaking we
are dealing here with specified programs of the form

Manuscript received December 11, 1980; revised March 10, 1981.
This work was supported in part by PAS MFCS Grant MR.1/3-04.1.1
and the National Science Foundation under Grant MCS 77-09906.

Early versions of this paper were presented at the International Con--

ference on Formal Methods and Mathematical Tools for the Construc-
tion of Software, Oberwolfach, West Germany, January 1979, the
International Conference on Mathematical Foundations of Computer
Science, Olomouc, Septenber 1979, and the Fourth International
Conference on Software Engineering, Munich, West Germany, Septem-
ber 1979.

The author is with the Institute of Computer Science, Polish Academy
of Sciences, Warsaw, Poland.

pre ¢, IN post ¢,y

where ¢, and c,, are the precondition and the postcondition,
respectively, and where IV is an instruction with nested asser-
tions. Such a program is called correct if: 1) IN is totally cor-
rect wr.t. ¢, and cp,, i.e., cp, guarantees nonlooping and ¢,
is satisfied upon termination; 2) Cpr guarantees nonabortion;
3) the assertions of IV are adequate for the proof of 1) and 2).

It is essential in our method that in program development we
construct and refine both the virtual program and the specifi-
cation. All devélopment rules must be sound, i.e., must pre-
sefve program correctness. At the same time they may quite
substantially change program meaning. This is in contrast to
some other methods of program development where programs
are developed from, rather than with, specifications 2], [5],
(6], [11], [12]. The reason why we do not follow this style
is twofold. First, in program development and maintenance
one frequently has to change the specification. Programming
is a creative art and any specification which is given ahead may
turn out inadequate or at least incomplete. Second, the devel-
opment of programs from specifications requires the concept
of an equivalence relation between programs. This leads to
tedious technical problems, since any practically acceptable
equivalence is not a congruence [6].

Another issue which is substantial in our approach is the

three-valued predicate calculus of McCarthy [21] used as a

pattern in the definition of semantics of Boolean expressions.
Except the clasical truth values true and false we admit the
third value undefined which we need for an adequate treat-
ment of abortion. Our rules of the evaluation of Boolean
expressions are similar to that of many existing languages, e.g.,
of Pascal [17]. ‘

In the present paper we describe an experimental, simplified
programming language PROMET-1 oriented towards the sys
tematic development of correct specified programs. We start
in Section II with the concept of an abstract data type which
is fundamental for our style of programming. This is followed
in' Sections III and IV by the syntax and the denotational
semantics of PROMET-1. Section V explains our two con-
cepts of correctness: the global correctness of instructions and
the correctness of specified programs. Program construction
and modification rules are described in Section V1. In Section
VII we give a detailed example of the derivation of a bubble-
sort procedure.

The idea of systematic program development is, of course,
not new. Starting from Dijkstra [13] and Wirth [24] it has
been advocated for many years and by many authors. In the
recent few years it started to evolve towards a more disciplined

0098-5589/81/0900-0519%00.75 © 1981 IEEE

TSP ———

520

approach and became the subject of theoretical research.
Some references to this field were given above. Below we
mention three other approaches which seem close to our
method.

1) Bir [1] describes a method of program development in a
modified Pascal. Programs are specified in a way very similar
to ours, but program correctness does not cover nonabortion
and must be proved in each step of program development.

2) Bjgpmer and others [3] develop a2 method based on the
denotational approach to software specification. This approach
is less formalized but has been used in serious applications
including the design and/or description of operating systems,
databases, and compilers.

3) Lee, de Roever, and Gerhard [18] describe a method
similar to ours but restricted to the partial correctness of
programs. ;

The present paper concludes the author’s earlier research
described partly in [5]-[9].

" II. ABSTRACT DATA TYPES

The abstractness of data types is one of the basic principles
of our style of programming. The user of PROMET is free in
in the choice of his data type and can modify this data type
along with the modification of the program. In this paper we
omit the problem of data-type specification. We only require
that data types are described as many-sorted algebras and that
they satisfy a few technical assumptions. In the applications
we allow any mathematical technique for the description of
concrete many-sorted algebras. We also allow that some sorts
and/or operations in data types are not implementable. Such

nonimplementable objects, e.g., abstract reals and operations’

on them, are used at the level of program specifications.

By an abstract data type we mean a many-sorted algebra
[14]

DT=((Di}rex, {filoes, sort, arity)

where K is a set of elements called sorts (e.g., real, integer,
Boolean, etc.), Z is a set of elements called functional symbols
(eg., +, -,V , V, &, etc.), and sort and ariry are functions
which associate to every symbol in I the sort of its value and
its arity, respectively. Formally,sort: T - K and arity: T+ K*.
For every sort k, D, denotes the set of all elements of sort k.
If for some o € Z, sort{0) =k and arity(o) =k, - - k,, then
we write o: ky X - X k, =k and assume that f; is a total
function which maps Dy, X «+-X Dy into D,.. Forinstance,
> : real X real ~ Boolean. 1f arity(g) = €, where € denotes the
empty string, then we write g:= k. For instance, 1:= integer.
In applications we identify every symbol o with its meanings
- |

In order to provide the framework for carrying out the
proofs of nonabortion, we assume that every D, contains an
abstract error 1 [15]. In particular Dg,opqa, = {frue, false,
1,} and the logical connectives are defined in McCarty’s [21]
style (we return to this issue in Sections IV and VI):

q if p=true

D >q,F=4r .if p=faISE

Ly if p=1,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-7, NO. 5, SEPTEMBER 1981

pVq=p-—trueq

p&q=p—q,false

pDOq=p—gq,tue
~p =p — false, true.

We also assume that with every data type there is associated
a family WFS = {(W,, <,)},ep of well-founded sets. For
every p € P, <, is a binary relation in W, such that there is no
infinite decreasing sequence wy >, wy >, - --in W,. Every
relation <, has an appropriate symbol in Z.

The last requirement about data types is that the set X con-
tains the sort any such that Dy, =U{D, |k € K-{any}} and
that with every sort k there is associated a sort predicate k:
any = Boolean such that f (d) = if d € D, then true else false.
For instance integer x is true iff x is an integer. Sorts and the
corresponding sort predicates will be denoted by the same
symbols.

III. PROMET—A LANGUAGE FOR THE DEVELOPMENT
OF SPECIFIED PROGRAMS

PROMET stands for PROgramming METhod. Here we de-
scribe the first experimental version of this language called
PROMET-1. As was mentioned already, PROMET-1 contains -
no mechanism for the specification of data types. We assume
therefore that data types are defined outside of the language
and that each concrete data type identifies an instance of
PROMET-1. In other words, once we fix a data type we fix
the corresponding syntactic and semantic primitives of the
language. The syntax of PROMET-1 is restricted to iterative
sequential programs with only global variables and without
goto’s.

Let there be given a set of identifiers /DE, an abstract data
type DT = ({Dy}xe k. (fo}oe, sort, arity) and a family of
well-founded sets WFS = {(W,, <p)l,cp. We define five
syntactic classes: EXP—of expressions, CON—of conditions,
UIN—of unspecified instructions, INS—of instructions, and
ASP—of assertion specified programs (abbreviated a.s. pro-

grams).

EXP ::=IDE |CON |o({EXP}) forall cE€Z
|if CON then EXP else EXP fi

CON :=g({EXP}) forall ¢ €Z with sort(o) = Boolean
|if CON then CON else CON fi
|(v IDE)CON | (3 IDE)CON

Of course, {EXP} denotes an arbitrary string of expressions.
The choice of sorts in this string is delegated to semantics. We
assume that in the applications we identify o with f, and allow
for infix notation. Quantified conditions are necessary for
specifications.

UIN ::= abort |skip |if CON fi | {IDE} := {EXP}
\UIN; UIN |if CON then UIN else UIN fi

The string of identifiers on the left side of := is nonempty,
repetition free, and of the same length as the string of expres-
sions on the right side of :=. Instructions of the form if CON fi
are called zests.

BLIKLE: DEVELOPMENT OF CORRECT SPECIFIED PROGRAMS

INS ::= UIN |INS as CON sa INS
if CON then INS else INS fi
| while CON
as CON ter EXP with IDE m p
do /NS od
linv CON INS vni

Conditions which appear after the key words as or inv are
called assertions. Expressions which appear after ter in while
instructions are called termination expressions. The symbol p
is an element of P and is a name of 2 well-founded set. The
assertion in the last instruction is called permanent invariant
and the instruction themselve is called an instruction with a
declared invariant. The key words mv and vni define the
syntactic scope of the invariant. Assertions and termination
expressions constitute local specifications and are skipped in
program execution. Their role becomes essential in the defini-
‘tion of correctness (Section V):

ASP ::= pre CON INS post CON.

The conditions which follow pre and post are called, respec-
tively, the precondition and the postcondition. In contrast to
instructions, which represent algorithms, a.s. programs repre-
sent statements about algorithms.

IV. THE SEmaNTICS OF EXPRESSIONS, CONDITIONS,
AND INSTRUCTIONS

Here we give a routine denotational semantics of PROMET-1.
Since our language contains neither goto’s nor procedures the
denotational technique used below is very simple and may be
understood by readers who are not familiar with it from else-
where. The semantics of a.s. programs are postponed to Sec-
tion V since it involves the concept of correctness.

To get started we need some notational conventions. For
any sets 4;, A;, 45, any binary relations R; C A; X 4.,
R, CA; X A4y, and any subset CC A5, by Ry R, = {{a, b)|
(3¢)(@aR,c & cR,b)} we denote the composition of Ry and
R, and by R C={a|l(3c)(@aR,c &c EC} we denote the
coimage of C w.r.t. R;. For any 4 by /,—orsimply Fif 4 is
understood—we denote the identity relation in 4, ie, [, =
{(a, a)le€A}. By @ we denote the empty relation and the
empty set. If R CA X A then R® =Jand R**! = RR for any
integer i> 0. By the interation of R we mean R* = U2, R".
For more details see [4]. By [4; > 4,] and [4; > 4,], we
denote the sets of all partial, respectively, total functions from
A, into 4,. By a state we mean a total function from the set
of identifiers IDE into D,,. By S = [IDE - D,,,], we denote
the set of all states. The function of semantics is denoted by
[] and maps syntactic objects into their denotations

[1 :EXP—[S =Dy,
[1:CON—[5~ {true, false, 1,}]1,
[1:INS=>[S~S]
[1:ASP— {true, false}.
Below we give the semantic clausesfor []. Letx, £, and ¢,

possibly with indexes, stand for identifiers, expressions, and
conditions, respectively.

521

1) [x](s)=s(x)

2} [o(Er, -+, EQI(9)
S ([E1]1(s),- -, [Ex) (5)) if the string of sorts
of [E;](s) is compatible with the
= arity of ¢
L otherwise; where k = sort (o)
3) [if ¢ then E, else E; fi] (5)
[E1] () if [e](s) = true
=q[E2] () if [c](s)=Jalse

lb if [C] (S)zlb.

Let for any s, s’ €S and x EIDE, s =5 except in x mean
that s(y) =s'(»), for any identifier y which is different from
x. We do not request that s(x}# s’ (x), but we do not exclude
this either. j

4) [(¥x)c](s)

true if [c] (s") = true for any 5" with
s' =5 except in x,
false if there exists s’ with s’ =35

except in x, such that [c] (s") = false

1 otherwise, i.e., if for some s', [¢] (s")
= true and for the remaining s’ (but at
least for one [¢] (s") = 1,

%

5) [(3x)e] () = [~(¥x)(~c)] (s)-

Observe that in 3) we introduce the mechanism of so-called
lazy evaluation: in evaluating a conditional expression we do
not evaluate both £ and £, but only this expression which is
pointed to by the logical value of ¢c. We return to this com-
ment in-Section VI. Now we define the semantics of /NS. Let
IN, possibly with indexes, denote instructions

6) [abort] = ¢
7 [skip] =Is
8) lif ¢ fi] = {(s,) [] (5) = true}
9) [xy, %, =Ey, " E,]
={(s1,5)I[E;] (sy) =L foral i<n&

S'z(xi)= [E‘] (S]) forall i<n&

s2(¥)=s1(y) forall y & {x;, -+ ,x,1}
10) [INy;IN;] = [IN;] [IN,] '
11) [IN, ascsaiN;] = [IN;] [IN:]
12) [if ¢ then IN, else IN, fi]

= [ifc fi] [IN,] W [if ~ ¢ fi] [IV;]
13) [while ¢ as ¢, ter E with x in p do /N od]
= ([if ¢ fi] IN])*[if ~ c fi]

14) [inv ¢ IN vai] = [IV].

Our semantics describe a very usual understanding of iterative
instructions. All assertions are considered as comments. Their
role becomes essential in the semantics of a.s. programs (Sec-
tion V).

V. THE SEMANTICS OF ASSERTION-SPECIFIED PROGRAMS

As. programs are correctness statements about instructions
and therefore the function of semantics associates with them
the truth values frue and false. We shall say, however, that an
a.s. program is correct or incorrect rather than true or false.

522

Intuitively, the correctness of pre ¢,, I\ post c,, means that
the following two conditions are satisfied.

1) IN is globally correct w.r.t. cp, and cp,, which means
that for any state which satisfies cp, the execution of [N termi-
nates cleanly (neither loops nor aborts) and the terminal state
satisfies cpp .

2) IN is locally correct w.r.t. ¢p, and cp,, Which means that
the assertions nested in [V are adequate for the proof of 1).

Let for any ¢ € CON, {c} = {s| [¢c] (s) = true}, i.e., {c} is the
set of all states which satisfy ¢. The property of global cor-
rectness is now easily formalized by the inclusion

{Cpr} < [iV] {Cpo}-

It should be stressed that this property is stronger than the
well-known total correctness [19]. The latter was defined
under the assumption that all conditions and expressions
represent total functions, i.e., that their evaluation can be
always successfully completed. Since in real programming
languages this assumption is never safisfied, all that total cor-
rectness means is the following. If ¢, is initially satisifed,
then the execution of IN is finite and if it terminates cleanly
(without error message) then Cpo is satisfied upon termination.
For instance, the program

pre integer array A [O:n] &a=A &i=n
while a [i] <a[i- 1]
doali],ali- 1] :==ali- 1],a[i];
i'=i-1od
post a is a permutation of 4

can be proved totally correct, although it aborts whenever i
reaches the value 0. Of course, this program is not globally
correct.

The concept of global correctness was originally introduced
(under another name) by Mazurkiewicz [20] for the case of
abstract iterative processes. Global correctness proof rules for
iterative programs were established later by Blikle [10] and
were proved consistent and algebraically complete. Here these
proof rules constitute cases in the definition of correctness of
a.s. programs. . Let for the convenience of notation the dia-
grams

5 maly
be read: if X then Y and X iff Y, respectively. Let for ¢,
¢, ECON, ¢,"= ¢, denote the fact that {c;} C {c,} and be

read as ¢, implies ¢;. The correctness of a.s. programs is de-
fined by structural induction. D stands for definition.

(D1) If UI'is an unspecified instruction, then
T pre ¢, Ul post ¢y,

L end € [U1 {epo}

For unspecified instructions correciness means, of course,
global correctness.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-7, NO. 5, SEPTEMBER 1981

(D2) ftoprec,, IN; asc, saIN, post cp,

1) precp, IN, postc,
1 2) prec, IN; postcp,

(D3) T precy, if c then IN, else IN; fipost ¢p,

1) =N =c
2) prec,, & ¢ IN; postc,,
L 3) pre cp, & ~c IN; postcp,

Observe that in the two-valued logic formula 1) in (D3) is
always satisfied. Here it means that whenever cp, is true, the
value of c is defined, i.e., the execution of ¢ does not lead to
abortion.

(D4)

T pre ¢, while ¢ as ¢, ter £ with x in p do IN od post ¢,

1) G ee;

2) ¢;=cV~c

3) i) [E] : {e,} = W, is a total function,
i) in IN x occurs at most in the assertions

4) prec, & c & E=x I[N postc, & E<, x

5) cﬂ & ~c= CPO

-

Here ¢, is called loop assertion and describes the environment
in which our loop is executed. In this environment ¢ has a
defined value [c.f. 2)], the value of £ is in the well-founded
set W, [cf. 3)], whenever c is satisfied then [NV can be exe-
cuted, keeps the state in the environment and decrements the
value of E [cf. 4)], if ~c is satisfied, then ¢,, is satisfied [cf.
3}

(D5) Tpre Cpr iV ¢ IN vni post ¢,

lpre cpr IN (cq & cfc,) post ¢p,

Here IN (¢, & c/c,) denotes the instruction which results from
IN by the replacement of any assertion ¢, by ¢; & c. Intu-
itively, the invariant declaration is a way of the factorization
of these conditions which could be added to all assertions. This
construction has been introduced for syntactical convenience.
If IN contains no assertions (is unspecified), then the invariant
declaration is effectless.

As has been proved in [10], local correctness always implies
global correctness, i.e.,

l pre c,, IN post ¢,

Lep 2 1) {0}

In other words the global correctness proof rules (D1)-(D5)
are consistent. It was also proved in [10] that every global-
correctness assertion is a Floyd’s assertion but not vice versa;
some Floyd’s assertions are too weak to be used in the proof
of global correctness.

BLIKLE: DEVELOPP;‘[ENT OF CORRECT SPECIFIED PROGRAMS

To conclude this section let us briefly explain the motivation
for having assertions in our programs. First, assertions are
necessary in program development. As will be seen later,
many of our program modification rules stwrongly rely on pro-
grams’ local properties. Second, they can be used in pro-
gram testing. If only implementable, they must be satisfied in
program execution. Third, they record programmer’s argu-
ments for the correctness of the program. Such arguments not
only justifly the credibility of the program, but also may be
useful in program exploitation and maintenance.

V1. ProGrAM DEVELOPMENT RULES

It is not the purpose of this section to give a complete set of
program development rules for PROMET-1. Different classes
of algorithmic problems may require different development
rules and the user of PROMET is expected to develop such
rules by himself. Our method only provides a mathematical
framework where these rules may be dsfined and proved
sound. Of course, there is a small set of mules used in nearly
every program development. Some of them are described
below.

A program development rule is called sound if it preserves
program correctness. In developing progrems by sound rules
we have to make sure that the initial program is correct and
that each rule is applicable whenever used.

The first set of rules is implicit in the definition of correct-
ness of Section V. Indeed, each of the diagrams (D1)-(D3)
when read bottom-up is such a rule. These rules are called
basic construction rules.

The next set of rules contains condition modifications (CM).
In order to describe them we have to introduce some metarela-
tions between conditions. Let ¢, €;, ¢; €ECON and let an
abstract data type DT be fixed. We say that ¢, and ¢, are
strongly, respectively, weakly equivalent (in DT), which we
deriote by

€y = ¢, Tespectively, ¢; = ¢,

if [ex] = [c;], respectively, {c;} ={c,}. In the first case ¢,
and ¢, represent the same logical (three-valued) function, in
the second—whenever one is satisfied, then so is the other and
vice versa, e.g., if n and x range over real numbers, then x >
0&n>x* =x>0&+/n >x, but the strong equivalence
does not hold since for n <0, n > x? is false and \/_>x is
undefined. On the other hand, n>0&x>0& n> x?
nz0&x208&~/n >x.

As is easy to see both relations = and = are equivalences,
but only the first one is a congruence. Indeed, ¢y = ¢, does
notimply ~c, < ~c,,eg,x ' >0&x=y-1e(y- 1)1 >
Okx=y- 1 butx ! <OVx#y-1%(y- Dl<oVx+
¥ - 1. In the algebra of conditions with = both & and V are
associative and distributive, and obey de Morgan’s laws. Of
course, they are not commutative. On the other hand, & is
commutative with <,ie c, & ¢, = ¢, &¢,, but V is not.

In the examples of weakly and strongly equivalent condi-
lions we had the situation that two conditions were compared
in the context of a third. For instance, n>x? and v >x

523

were compared in the context of x > 0. Since this situation is
typical in program development we introduce a more explicit
notation. We write

¢ =c, whenever ¢,
if ¢3 &¢; <c;3 &c, and

¢, ® ¢, whenever ¢,
if c3&e), =cy &ey.

For instance,

n>x*<+/n>x whenever n=20&x >0
n>x? < \/n >x wheneverx > 0.

(CM.1) Ifin a correct a.s. program we replace
1) any while-do or if-then-else condmon ¢; by ¢, such
thate; =c,, or
2) any precondition, postcondition, or assertion ¢, bycy
such that ¢; < ¢, then the resulting program is correct. o
(CM.2) If in a correct a.s. program with a declared invariant
¢ we replace any assertion ¢, which appears within the syntac-
tic scope of the declaration of ¢ by ¢, such that ¢; = ¢,
whenever c, then the resulting program is correct. . =i
(CM.3)

1) precp, while ¢, as ¢, ter £ in p do IN od post Cpo
2) ¢; =c¢, whenever c,

J' pre ¢, while ¢, asc, ter £ in p do IN od post c,,,
(CM.4)

| 1) prec,, IN postcp, ‘
2) €= Cpp AN B g,

J

l
i pre cp, IN post cpo

Easy proofs of the soundness of these rules are omitted. We
may add that by 2) of (CM.1) the connective & is commuta-
tive in preconditions, postconditions, and assertions.

The applications of CM-rules are rather obvious. Some are
shown in Section VII some others in [9]. Below we show a
typical application of (CM.3). Let [\/n] denote the integer
square root, let nnint denote the WFS of nonnegatwe integers.
The program

pren=20&x=0

while x < [+/n]
asn,xz20&x<
dox =x+ 1 od

postn=20&x = [n]

computes [v/n], but refers to this function in the while con-
dition. This is a typical situation at an early stage of program
development. We eliminate the unwanted condition on the
strength of the conditional equivalencex < [vn] = (x + 1) <
n whenever n, x 2 0 and get

(vn] ter [vn] -

x with z in nnint

(1)

524

pren20&x=0
while (x + 1)* <n
asn, x> 0&x< [Vn] ter [v/n] - x with z in nnint
dox:=x+1lod

postn?O&x=[\/rT]. 2)

The next class of rules consist of program enrichments (PE).
The first rule supplies a new identifier y and extends the pro-
gram in such a way that for a certain expression £ the equa-
tion y = E becomes a permanent invariant. LetE(E' [x)denote
the result of the substitution of E' for all quantifier-free oc-
currences of x in E. Let IN|x =F denote the instruction
which results in from IN by the replacement of every assign-
ment Xy, -°, %y =Eq, ", Ep inIN, such that at least one
x; appears in E, by the assignment Xy, ,Xn, ¥*=Ey,°" ",
E,, E(E\Jxy, ", Ep/x,). Leta c-computation of IN be a
sequence of states sy, 52, "~ genecrated during the execution
of IN and such that s, satisfies the condition ¢. Of course all
the three concepts may be easily formalized.

(PE.1)

1) pre cp, IN post cpo,
2) y does not appear in the program above,
3) the value of E is defined for any

state of any ¢p,-computation of IN

lprecp,&y=Einvy=EIle=Evnipostcpo&y=E

A routine but tedious inductive proof of this rule is omitted.
The rule has two major applications: the transformation of
programs from one data type into another [7] and program
optimization. An example of the lamer is the introduction of
y with y =(x +1)? into the program 2). Since after such a
transformation the permanent invariant y =(x + 1)* becomes
a semantic part of the loop assertion, we can modify while
condition on the strength of (x +1)? <n =y <n whenever
y=(x+1)? and (CM.3). We can also replace the assignment
x,yi=x+1, ((x+1)+1)P by x,y:==x+1,y+2x+3. On
the strength of y =(x + 1)? the latier is semantically equiva-
lent to the former. As a result we get

prearr?O&x={)8.Ly=(:rt~!-1)2
invy=(x+1)*
while y<n
asn, x>0 &x< [vn] ter [\/n] - x with z in nnint
dox,y:=x+1,y+2x+30d
vni
postn>0&x=[vVn] &y =(x+1)*.

The second PE-rule serves in the development of while loops.
Many instances of such loops may be regarded as vehicles with
two distinguished mechanisms: step and keep. The step mech-
anism proceeds from one element into another in a WFS; the
keep mechanism is responsible for keeping a certain assertion
¢, true in all steps. Since the step mechanism usually destroys
the truth of ¢,, the keep mechanisn must provide a recovery.
For instance, in the loop which calculates Zj.,a; and stores
this value in x, step consists of i:=i+ 1, the assertion ¢, is

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-7, NO. 5, SEPTEMBER 1981

xX= E;,la}- and keep is x :=x +a;. The step-and-keep view-
point suggests a certain strategy in developing loops. First
develop a pure step mechanism, then enrich it by an appropri-
ate keep mechanism. The following rule formalizes this strat-
egy for while-do instructions.

(PE.2)

1) pre cp, while c asc, ter E with x in p do IN od post ¢,
2) prec, &c & ¢, IN postc, & ¢}

3) in IN; ,x occurs at most in the assertions

4) prec, &cy &E<, x IN, postc, & ey &E<p X

pre ¢, & €y
while ¢
asc, & c; ter E withx inp
do
N
asc, &c; &E<,xsa
IN,
od
post ¢, & €1
v

Here program 1) represents the step mechanism. We wish to
modify it in such a way that the new loop preserves condition
¢;. Since IN destroys this condition [cf. 2)] we add an in-
struction IN, which provides the recovery [cf. 4)]. We also
assume that IN; does not increase too ‘much the value of £.
The application of this rule is shown in Section VII.

The proof of the soundness of (PE.2) consists of showing
that the resulting program is correct in the sense of (D4).
Cases 1), 2), 3), and 5) of (D4) are obvious. In order to show
4), observe that by the assumption 1) of (PE.2) precy & ¢ &
E=xIN post ¢, & E <, x. On the other hand, IN transforms
¢, into ¢y, hence (formally this step requires a new CM-rule)
prec, & c & ¢y & E=xIN postc, &cy &E<px. This, to-
gether with the assumption 4) of (PE.2) and by the rule (D2)
leads to the required conclusion: pre ¢, & ¢ &c&E=xIN
asc, &c; & E<p xsalNy postc, & &E<, X,

The last rule which we describe here belongs to the group of
program truncations and consists of the removal of an identi-
fier from a program. This rule is used in space optimization
and in transforming programs from one data type into another.
An identifier x is called autonomous in an instruction IN ifit
appears at most in assertions and in the assignments which
modify x. By IN/x we denote the instruction which results
from IN by the removal of all assignments of the form x = E
and by the existential quantification of all free accurences of
x in the assertions of IV.

(PT.1)

1) pre cp, IN post cp,
2) x is autonomous in IV

l pre (3x)c,, IN/x post (3x)cpo

The quantification of x in /¥ requires special attention if x

BLIKLE: DEVELOPMENT OF CORRECT SPECIFIED PROGRAMS

sccurs simultaneously in a declared invariznt and in an asser-
ion which is in the syntactic scope of this invariant. In such a
.ase we cannot quantify x separately in the invariant and in
issertions. We have to eliminate x either from the invariant or
irom the assertions and if this is impossible we have to move
the invariant down to all corresponding assertions. For appli-
;ations of (PT.1), see [7] and [9].

VII. AN EXAMPLE OF PROGRAM DERIVATION:
BUBBLESORT

To get started we recall the intuitive idea of bubblesort.
suppose that we are given a vertical column of bubbles, each
subble having a certain weight. Suppose that our bubbles are
mmersed in an environment which satisfies the following
srchimedes principle: each bubble which is ligher than its
spper neighbor tends to swap with this neighbor in moving up.
At some initial moment all the bubbles are glued together
#hich prevents them from swapping. In the first step of bub-
jlesort we free the first bubble from the top. Of course,
sothing will happen since this bubble has no upper neighbor.
Vext we free the second bubble. This time a swap may occur
f the second bubble is lighter than the first one. In each suc-
:essive step of our procedure we free the successive bubble
vhich immediately starts to move up in searching for such a
sosition in the column which does not violate the Archimedes
sinciple. It is intuitively clear that in the last step of our
rocedure the column of bubbles will be ordered according to
he increased weights.

In developing programs in PROMET the first step always
:onsists of the description of the appropriate data type. Then
we write the first version—or approximation—of our program
nd from now on we develop and modifv both the data type
ind the program. Since PROMET-1 is not equipped with the
ormalism for data specification, we shall use here, in that
Jlace, the language of intuitive mathematics. In our example
he initial data type is the following.

Sorts:
Int-integers;
Arr-arrays; each array is a total function
a:{0, -, n}~>Int, where n > 0;

Bol-{true, false, 1,}.
‘unctions {with Non-Boolean Values):
+, -, 0, 1-the arithmetical functions and constants
understood in the standard way;
maxind: Arr = Int-the maximal index of an array
component: Arr X Int = Int-the ith component of an array;
according to the common style we shall write
a[i] for component(a,i)
seg: Arr X Int + Arr-the initial segment: seg(a,])
=(@(0), -+, a(;)) for 0 < < maxind a; according to the
common style we shall write a [0:j] for seg(a, /).
Predicares: ‘
integer, array-the sort predicates (Section II)
<, <-the usual arithmetical inequalides
is sorted: Arr — Bol
a is sorted ‘= (¥ integer i)
(0<i<maxindaDa(i)<a(i+1))

525

perm: Arr X Arr —+ Bol
a, perm a, ‘< g, is a permutation of a, .
WFS:
nnint = ({0, 1, 2, - - -}, <)-nonnegative integers.

Having defined our data type we can proceed to the develop-
ment of the program. Following the physical model of bubble-
sort, we shall assume that the program consists of two mecha-
nisms, as follows:

1) the step mechanism, which moves a certain pointerj top-
down along the array; intuitively this pointer releases successive
bubbles,

2) the keep mechanism, which guarantees that in every step
the segment 2 [0: j] has been sorted.

In order to describe these mechanisms we first establish a
condition which characterizes the invariant properties of
identifiers in the program. This condition will be later declared
as a permanent invariant and will be referred to as environ-
ment-1:

array A,a &aperm A & ‘
integerk,j & k=maxind A & 0<j <k,

Here A4 is a (constant) external array and a is its internal copy.
The integer j represents a pointer which moves from 0 to k.
Now we can describe the step mechanism of our loop.

pre environment-1 &a=A4 &j=0
inv environment-1
whilej <k
as true ter k - j with x; in nnint
doji=j+1od
vni
post environment-1 &j = k. (3)
This program is obviously correct. The keep mechanism of
our prospective loop should keep the truth of the assertion
a[0, j] is sorted. In order to introduce it into (3) we apply
(PE.2). First observe that the following program is correct

[cf. 2), (PE.2)]:

pre environment-1 & a [0:]] issorted & j <k
j=i+1
post environment-1 &j> 0 & a [0:] - 1] is sorted. (4
Our recovery instruction—call it <BUBBLING> —must satisfy
3) and 4) of (PE.2). This means that it must not change the
terminal variable x;, and must make the following a.s. pro-
gram correct: —

pre environment-1 & j >0 & a[0:j - 1]
is sorted & k - j <x,
inv environment-1
<BUBBLING>
vni
post environment-1 & a[0:7] issorted & k - j <x,.

(5)

According to (PE.2), for any instruction <BUBBLING>
which does not modify x, and satisfies (5) the following pro-
gram is correct:

T

it T P e e .

R —

526 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-7, NO. 5, SEPTEMBER 1981

pre environment-1 &a =4 &j=0
inv environment-1

whilej <k

asa[0:7] is sorted ter k - j with x, in nnint

doji=j+1
asj>0&a[0:/- 1] issorted &k - j<x, sa
<BUBBLING>

od

vni
post ervironment-1 & j=k & a[0:]] is sorted. (6)

This is a scheme of a sorting procedure where we have to sub-
stitute an appropriate instruction for <BUBBLING>. In
order to design this instruction we extend our data type by
adding one new sort, two new functions, and one new predi-
cate. '
Sort:
Vec-vectors; each vector is a total function v : N—=Int
where V is an arbitrary finite set of integers
Functions:
swap: Arr X Int X Int - Arr; swap(a, i,j) is, for
0<1i,j < maxind a, the result of swapping the ith
with the jth element in a
bur: Arr X Int - Vec;a but i is, for 0 < i < maxind a, the
restriction of array a to the domain
{0, -, maxind a} - {i}
Predicates:
bubbles in: Int X Arr — Bol. i bubbles in g :=
. 0<i<maxind a
& a but i is sorted & i < maxind a
Dali+ 1] =ali].

It is understood that the predicate is sorted has been extended
to the sort of vectors. Our instruction <BUBBLING> will be
a loop where the step mechanism moves 2 new pointer j (which
simulates the ascending bubble) and the keep mechanism keeps
true the assertion i bubbles in a[0,]. In order to describe
this loop we have to extend our environment by adding new
identifieri. Let then environment-2 denote

environment-1 & inregeri & 0<i <j.

Observe that in all former programs we may replace environ-
ment-1 by environment-2 and these programs remain correct.
First approximation of <BUBBLING> may be written off-
hand

pre environment-2 &j >0 & a[0:j - 1] is sorted
&k-j<x; &i=j
inv environment-2
while ~a [0:] is sorred
asibubblesina[0:]] & k-j<x,
ter / with x, in nnint
doii=i-1;
a:i=swap(a,i,i+1)
od
vni ;
post environment-2 & a [0:f] is sorted & k - j<x,.

(7

This program is correct, which is easy to prove, but its while
condition is hardly implementable. We replace this condition
by i>0&ali] <a[i- 1] in applying (CM.3) and the condi-
tional equivalence

~a[0:j] issorted<i>0&ali] <ali- 1]
whenever
environment-2 & i-bubblesina[0:j) & k- j<x,.

Observe that in this transformation we strongly rely on the
local specification of our program. The existence of this speci-
fication allows us for the immediate application of (CM.3).

After having applied this transformation we prefix (7) with
i:=j and get the final version of <BUBBLING>. We substi-
tute this instruction into (6) replacing at the same timej =k &
a[0:7] is sorted by j=k & a is sorted in the postcondition.
The following is the final bubblesort program:

pre environment-2 &a=A & =0
inv environment-2

while j < k
asa[0:]] is sorted ter k - j with x, in nnint
doj:=j+1
asj>0&af0:j- 1] issorted & k - j<x, sa
i::j
asj>0&i=j&a[0:]- 1] is sorted

&k-j<x;sa
while i > 0&a[i] <ali- 1]
asibubblesina[0:j] & k-j<x,
ter { with x, in nnin:
do
i ==k
a‘=swap (a,i,i+1)
- od
od
vni
post environment-2 & j = k & a is sorted.

VIII. FINAL REMARKS

The experiences collected with PROMET-] (see Acknowl-
edgment) proved that it may be an adequate tool in developing
programs of a textbook size. Of course, in order to become a
more realistic language, PROMET must be equipped with addi-
tional mechanisms such as type declaration, blocks, procedures,
etc. This work is in progress now.

A routine question raised in connection with any formal
method of programming is to what extent should such a
method be applied formally. In the author’s opinion the ap-
propriate level of formality is that of intuitive mathematics.
Evident need not be proved, but everything must be provable,
Whether to carry out a formal (but never formalized) proof is
left to the programmer.

ACKNOWLEDGMENT

The author wishes to thank H. E. Sengler whose discovery of
a mistake in an early version of this paper gave rise to the in-
troduction of the three-valued logic into PROMET, and to A.
Mazurkiewicz who suggested McCarthy’s logic. He is also
grateful to K. Apt and B. M. Reynaud for their stimulating

BLIKLE: DEVELOPMENT OF CORRECT SPECIFIED PROGRAMS

remarks. The ideas of this Paper were included in three courses
which the author gave in Berkeley (1979), in Warsaw (1979),
and in Lyngby (1980). The discussions which he had in his
classes certainly influenced the approach. He also wishes to
thank in particular D. Brotsky from Berkeley, A. Tarlecki
from Warsaw, and N. Anderson from Lyngby.

REFERENCES

[1] R. Bir, “A methodology for simultaneously developing and ver-
fying Pascal programs,” in Proc. Constructing Qualiry Software,
IFIP TC-2 Working Con ., Novosybirsk, May 1977. Amsterdam,
The Netherlands: North-Holland, 1978.

[2] F. L. Bauerer al., “Towards a wide spectrum language to support
program specification and program development,” SIGPLAN
Notices, Dec. 1978.

[3] D. Bigpmer, “The Vienna development method (VDM): Software
specification and Program synthesis,” in Proc. [nt. Conf. Math.
Studies Inform. Processing, K. E. Blum, M. Paul, and S. Takasy,
Eds., Kyato, Japan, Aug. 1978. New York: Springer, 1979.

[4] A. Blikle, “A comparative review of some program-verification
methods,” in Proc. 6th. Symp. Math. Foundations Comput. Sei.,
Tatranska [fomnica, 1977; also in Lecrure Notes in Computer
Science, vol. 53. Heidelberg: Springer, 1977, pp. 17-33.

[5] —, “A mathematical approach to the derivation of correct
programs,” in Proec. Int. Workshop Semantics Programming
Lang., Bad Honnef, Mar. 1977; also in Abteilung Inform., Uniy.
Dortmund, Bericht Nr 4.1, 1977, pp. 25-29.

[6] —, “Towards mathematical structured programming,” in Proc,
IFIP Working Conf. Formal Description Programming Concepts,
St. Andrews, N.B., Canadd, Aug. 1-5, 1977, E, J. Neuhold, Ed.
Amsterdam, The Netherlands: North-Holland, 1978.

[7] —, “Specified programming,” in Proc. Int. Conf. Math. Studies
Inform. Processing, K. E. Blum, M. Paul, and §. Takasu, Eds.,
Kyoto, Japan, Aug. 1978, ‘New York: Springer, 1979.

[8] —, "“Assertion programming,” in Proc. Int, Conf. Math. Founda-
tions Comput. Sci., . Becvar, Ed. Heidelberg: Springer, 1979.

[8] —, “On correct program development,” in Proc. 4th nr. Conf.
Software Eng., Munich, Sept. 1979, pp. 164-173, IEEE Cat.
79CH1479-5C.

{10] —, “The clean termination of iterative programs,”™ Acta Infor-
marica, to be published.

[11] M. Broy er af., “Methodical solution of the problem of ascending
subsequences of maximum length within a given sequence,”
Inform. Process. Lert., vol 8, no. 5, pp. 224-229, 1979,

[12] R. M_ Burstal and J. Darlington, “A transformation system for
developing recursive programs,” J. Ass. Comput. Mach., vol 24,
pp. 44-67, 1977,

[13] O. I. Danl, E. w. Dikstra, and C.A.R. Hoare, Structured Pro-
gramming. New York: Academic, 1972,

527

[14] 1. A. Goguen, J. W, Thatcher, E. G. Wagner, and J. B. Wright,
“Abstract data types as initial algebras and correctness of data
representations,” in Proc. Conf. Comput. Graphics, Pattern
Recog. Data Structure, May 1975, pp. 89-93,

[15] —, ‘“‘Abstract errors for abstract data types,” in Proc. JFIP
Working Conf. Formal Description Programming Conceprs,
E. Neuhold, Ed. New York: North-Holland, 1978,

[16] MJ.C. Gordon, The Denotational Descriprion of Programming
Languages. New York: Springer, 1979,

[17] K. Jensen and N, Wirth, Pascal User Manual, 2nd ed. New York:
Springer, 1975.

[18] S.Lee, W.P. de Roever,and §. L. Gerhart, “The evolution of list-
copying algorithms,” in Proc. 6tk ACM Symp. Principles Pro-
gramming Lang., Jan, 1979,

[19] Z. Manna and A. Preli, “Axiomatic approach to total correct-
ness of programs,” Acta Informatica, 1974,

[20] A. Mazurkiewicz, * TOving properties of processes,” an invited
lecture at MFCS, Strbske Pleso, 1973; also in Algorytmy, vol. 11,
pp. 5-22, 1974,

[21] 1. McCarthy, “A basis for a mathematical theory of computa-
ton,” presented at Western Joint Comput. Conf., May 1961; also
in Compuzer Programming and Formal Systems, P. Braffort and
D. Hirschberg, Eds. Amsterdam, The Netherlands, North-Holland,
1967, pp. 33-70.

[22] C. Pair, “La construction des programmes, R.A.I.R.Q." Infor-
matique, vol 13, pp. 113-137, 1979.

[23] H. Rasiowa, 4n Algebraic Approach to Non- Clasical Logic. Am-
sterdam, The Netherlands: North-Holland, 1974,

[24] N. Wirth, “Program development by stepwise refinement,” Com-
mun. Ass. Comput. Mach., vol. 14, pp. 221-227, 1971.

Andrzej Blikle received the M.S. degree in
mathematics from Warsaw University, Warsaw,
Poland, in 1962, and the Ph.D. degree in mathe-
matics from the Polish Academy of Sciences,
Warsaw, Poland, in 1966.

In 1964 he joined the Mathematical Institute
of the Polish Academy of Sciences. Since 1971
he has been with the Institute of Computer
Science of the Polish Academy of Sciences,
where he is currently a Professor. He has also
been a Visiting Professor at the University of
, Waterloo, Canada, the University of California, Berkeley, the
Technical University of Denmark, Lyngby, and Linkdping University,
Link6ping, Sweden. His professional interests center around program
correctness and the mathematical semantics of programming languages.

Dr. Blikle is 2 member of the Polish Mathematical Society, the Polish
Computer Science Society, the American Mathematical Society, and
the Association for Symbolic Logic.

